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Resumen / Abstract

El análisis estadístico de valores extremos es de suma importancia en muchos campos de la ingeniería.
Este trabajo es una breve introducción a la modelación con distribución  de valores extremos. Consiste
en la presentación de dos métodos básicos comúnmente empleados en el modelado de valores extremos
para analizar el problema típico de estimación de valores de retorno. Como ilustración de los métodos,
se investiga un conjunto de datos de la precipitación mensual en La Habana.
Palabras clave: análisis estadístico,valores extremos, modelación, distribución de valores extremos, estimación de

valores de retorno, precipitación

Statistical analysis of extreme values is of importance in many fields of engineering. This paper will
serve as a brief introduction to modelling with extreme-value distributions. A presentation of two common,
basic methods is given to analyse the standard problem in extreme-value modelling of estimation of return
values. As an illustration of the methods, a data set of monthly precipitation at Havana is investigated.
Key words: statistical analysis of extreme values, modelling, extreme-value  distributions,  extreme-value modelling,

estimation of return values, precipitacion

TRABAJOS TEORICOEXPERIMENTALES

INTRODUCTION

Knowledge of extreme values is important in many

sciences and eventually for decision making in society,

for example regarding questions related to energy

production and consumption. How likely are certain

unusual, perhaps undesired, events to happen . that

is, how often? How high values of temperatures, wind

speeds or other quantities with implications for energy

supply or demand could be expected? In statistical

analysis of extreme observations, the main interest

lies in studying the tails of suitable probability

distributions; this in contrast to standard statistical

analysis, where the central parts of distributions are

in focus. Several textbooks on extremevalue theory

exist, for example by Castillo et al.1, Coles,2 the

classical text by Gumbel3 or chapters in the book on

risk analysis by Rychlik and Ryden.4

In this paper, we discuss in the next section how

extreme-value modelling may enter, directly or

indirectly, in problems related to energy. That section

is followed by a review of some 1 fundamental

theoretical results and their implications. Thereafter,

we will present commonly used methods how to

estimate design values of randomly varying quantities

and exemplify with a data set of monthly precipitation

at Havana, Cuba.

APPLICATIONS TO ENERGY

Statistical extreme-value analysis has been used
extensively in the environmental and meteorological
sciences to analyse wind speeds, wave heights,
temperatures and alike. Data are then often given as
sequences of observations at some time scale: hourly,
monthly, etc. The relation to problems related to energy



21

supply and demand is obvious; knowledge of the

(extreme) weather conditions assist in making

predictions of energy demand. Moreover, in the

development of technologies for renewable energy

sources, mathematical and statistical modelling of

solar radiation as well as of wind data is important (cf.

the SWERA project, http://swera.unep.net).

In a broader perspective, consequences of the problem

of global warming on energy consumption are studied.

Harasawa,5 presents a prediction that an increase of

1 0C in summer yields an increase in energy demand

in Japan of 5 000 MW. Extreme weather may cause

severe disturbances in national power systems; for

example, violent storms hit France in December 1999

and caused damages to electricity transmission and

distribution networks (see Le Du et al.6).

Important practical engineering applications of

extreme-value theory are found for design purposes:

to compute so-called design values and return periods.

As will be motivated in the next section, extreme-

value models are often particularly well describing

situations where maxima of independent observations

have been created. For example, Arvastson and

Wollerstrand,7 found an extreme-value distribution to

describe well the distribution of daily domestic hot-

water peak values.

Finally, statistical extreme-value analysis is not always

suitable to model all more or less possible notions

and quantities related to energy and society. For

instance, the total yearly energy demand of a nation

is often governed deterministically to a great extent

by energy balances; hence, random mechanisms are

not the major factor in determining such numbers.

EXTREME-VALUE MODELS

Assume that we have observations that are

statistically independent and identically distributed.

The aim is to study the distribution of the maximum

of, say, n variables. Asymptotically, i.e. increasing

the number of variables, it has been shown by the

pioneer researchers in extreme-value 2 theory that

the distribution of the maximum converges to one

of three types of extreme-value distributions. One

of these is the Gumbel distribution (also called

double exponential, or simply extreme-value

distribution), which in many applications is a natural

model. The distribution function for a Gumbel

distribution is given by

F(x) = exp(e − (x.b)/a), - x < x < α

where:
a: Scale parameter.
b: Location parameter.

In 1936, von Mises combined the three types of

distr ibutions in one, more general class of

distributions, the so-called Generalized Extreme

Value distribution (GEV) in which three parameters

appear: in addition to scale and location parameter,

a shape parameter is introduced. (The Gumbel

distribution can be seen as a GEV distribution with

shape parameter equal to zero.)

In practical work with data, a crucial issue is to decide

whether an extreme-value distribution is well suited.

Recall from above that these distributions arise as

limits asymptotically, i.e. when the number of

observations increases. Often the number of

observations available is not that large. In practice,

diagnostic tools are used, for instance plotting in

different kinds of papers.Once a model distribution has

been chosen, there exist methods for estimation of

parameters in the distribution: by standard techniques

(like maximum likelihood, ML) or specially developed

(like method of moments).

CALCULATION OF RETURN VALUES

In this section, we will present two standard methods

to compute return values, that is, values that have a

return period of, say 100 years. Somewhat loosely

speaking, the 100-return level is the level exceeded

on average once in 100 years Data are assumed to be

available at some time scale (hourly, monthly, weekly).

Method of annual maxima

This is the traditional method. Consider a fixed period

of time (usually one year). The method is as follows:

find each annual maximum and create the series of

maxima, to which one of the three classical types of

extreme-value distributions is fitted (often the Gumbel

distribution). This method has its limitations, in

particular, since possible dependence is not taken into

account in the model. (This is often the case with

seasonal loads.) Moreover, other large values during

the year are ignored, for example the second and third

highest largest maxima.

Peaks Over Threshold (POT)

The POT method makes use of a mathematical result

for conditional distributions: exceedances over a high

threshold can be shown to belong to a Generalized

Pareto Distribution (GPD), provided the tail of the parent

distribution belongs to the class of the extreme-value

distributions.
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As a special case of GPD is found the exponential

distribution. If the GPD distributed exceedances of

the level occur according to a Poisson process, the

maxima belong to a GEV.

A crucial issue when using POT methods is the choice

of the threshold. With a level chosen too high, there

are not enough exceedances over the threshold to

obtain good estimates of the parameters and their

variances become high. On the other hand, with a too

low threshold, the GPD might not be a good fit to the

exceedances and hence a bias is introduced in the

estimates. There is no simple rule how to choose the

level. In practice, diagnostic plots are used; criteria

minimizing a mean-square error expression are also

found in the literature.

EXAMPLE: MONTHLY TOTAL PRECIPITATION IN
HAVANA

In this section we illustrate the methods discussed

above, making use of monthly total precipitation in

Havana, from January 1949 to December 1970.

Changes in amount and pattern of rainfall lead to

impact on power generation, management and

implementation of dams. Design issues may therefore

be of interest for energy engineering community.

A time series of the observations is shown in figure 1

(left); in all there are 246 observations (hence, some

missing values). The distribution over the year is

interesting and presented in figure 1, right panel. There

are seasonal effects, for instance, normally no huge

amounts of precipitation are found during the first four

months of a year.

The data originate from the National Oceanic and
Atmospheric Administration (NOAA) and are compiled
from information recieved at the National Climatic Data
Center, Asheville, NC, USA. The data set can be found
at the internet.

Annual maxima

The number of observed yearly maxima (22) is rather
low, one cannot be sure whether the asymptotic results
for extreme-value models are valid. In figure 2, the
yearly maxima are plotted in a so-called probability
paper for the Gumbel distribution. If the observations
are quite close to a fitted straight line, a Gumbel
distribution is assumed; this seems to be the case
here. Furthermore, fitting of a GEV yields a shape
parameter equal to 0,010 and a statistical 4 Month
Total precipitation (mm) test implies that at the 0.05
confidence level, the hypothesis of shape parameter
equal to zero cannot be rejected. Hence, the assumption

of a Gumbel distribution is made.

The parameters in the distribution are found by
maximum likelihood estimation, implemented in
statistical software like the Matlab toolbox WAFO or
the open-source statistical software R. By Matlab, we
find the estimates of a and b to be a. = 80, b. = 201
and the 100-year return value of monthly total
precipitation x 

100
 is

x
100

 = b* .  _ a* . ln(- ln(1 - 1/100)) = 567 [mm].

Assuming asymptotic normal distribution for the
parameter estimates, the standard error of x

100
 is 69

(mm) and an approximate 95% confidence interval is
then [432, 701]. A Monte-Carlo based 95 % confidence
interval, based on normal distributed parameters, is

1

Monthly total precipitation in Havana, Jan. 1949 - Dec., 1970. Left: Time series. Right: Data plotted monthly.
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given by [421, 724].Note that these confidence
intervals are quite wide.

In a careful study, the model needs to be valid: maxima
from one year to another should be independent and
identically distributed. If changes occur over the years,
for example due to global warming, the model might
not be valid anymore. Furthermore, convergence to
the extreme-value distributionis in many instances slow,
in this case we have only 22 observations.

POT method

There exists no simple way to choose a suitable
threshold. In practice, several diagnostic plots are
used. Based on such plots and a recommendation
made by Hasofer8 that for the number of tail
observations k (exceeding the threshold), k ≈ 1, 5     n
where n is the total number of observations, a threshold
about 210 mm is found. Point estimates given by
Matlab9 are as follows for some choices of thresholds:

Threshold (mm) 200  210  220  230
100-year return value (mm) 579 559 566 604.

The confidence intervals for the return values computed
by the POT method are even wider in comparison to
the method of annual maxima; for example, for the
threshold 210 mm, a 95 % Monte Carlo confidence
interval is given by [322, 1233].

SUMMARY

speeds, wave heights). For real design purposes,
several (additional) issues must be taken into account,
for example the performance of the estimators; model
validation (e.g. Gumbel or GEV?); the independence
assumption (seasonal aspects, cf. figure 1, right panel);
dependence on possible covariates. Bayesian
modelling of the uncertainties of the design values
might be an alternative in the case of few observations.
Occasionally, the original observations are transformed
before performing the extreme-value analysis to
achieve 6 faster convergence to an extreme-value
distribution; this is often made in wind engineering.

USEFUL LINKS

The statistical software R: http://www.r-project.org/
The Matlab toolbox WAFO: http://www.maths.lth.se/
matstat/wafo/
National Climatic Data Center: http://
www5.ncdc.noaa.gov/pubs/publications.html
IEA Energy Statistics: http://www.iea.org/Textbase/
stats/index.asp
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22 Yearly maxima plotted in Gumbel probability paper.

In this paper, we have presented some basic
methods to analyse extreme values, given
sequences of observations. The analysis
performed is made simple to illustrate the basic
ideas of the methods; the obtained values
themselves are less interesting than the
statistical reasoning. More refined procedures
have been developed in the specialised literature,
often adapted to the specific kind of data (wind


