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Abstract/ Resumen

The problem of electromagnetic waves propagation in overhead transmission lines has apparently
not been solved in a sound manner yet. While the problem does not have an exact analytical
solution when considering the presence of the actual surface of the earth, its approximate solution
introducing the oretical simplifications is of formidable practical interest. Using quasi-static
approximations Carson obtained integral equations to calculate the electromagnetic field due to a
horizontal current carrying wire which is above a lossy ground plane. Carson himself proposed the
first solution to these expressions using power series expansions which does not possess uniform
convergence and since then there have been efforts to get a better solution. In this sense two clear
approaches have been essentially followed. The first one consists on modifying the integrand in
such a way that an analytic solution can be obtained. The second one is based on using numerical
integration schemes.

Key words: ground returns impedance, Carson’s integrals, power series, and aerial transmission
lines.

El problema de la propagacion de ondas electromagnéticas en lineas de transmision aéreas aun
no ha sido resuelto de manera definitiva. Si bien el problema no posee una solucién analitica
exacta cuando se considera la presencia de la superficie real de la tierra, su solucién aproximada,
introduciendo simplificaciones tedricas es de gran interés practico. Usando aproximaciones cuasi-
estaticas, en 1926 Carson obtuvo ecuaciones integrales para el célculo del campo
electromagnético generado por la corriente de un conductor horizontal sobre un plano de tierra
imperfecto. La primera solucion la propone el mismo Carson utilizando expansiones en series, las
cuales no poseen convergencia uniforme y desde entonces se han hecho esfuerzos por tener una
mejor aproximacion. Se han seguido dos enfoques claros, el primero consiste en introducir
modificaciones en el integrando de manera que sea posible obtener una solucién analitica. El
segundo, se basa en la utilizacion de métodos de integracién numérica.

Palabras clave: impedancia de retorno por tierra, integrales de Carson, series de potencia, lineas
de transmision aérea.

Methodology — Because Carson’s integrals have a decreasing exponential term, the infinite upper
limit can be substituted by a finite limit without altering the result beyond a preset error. With such
limit substitution and using power series a new analytic solution with uniform convergence for all
cases is obtained in this work. For comparison purposes Carson’s series and approximated
compact formulas published elsewhere are used. As a gold standard the numerical solution of
Carson's integral using Romberg integration with an error of 10 is used.

Findings — The final results verify that the proposed solutions converge for all test cases, unlike
Carson's formulas, and are more accurate than compact expressions.

Originality — It is developed a new way to solve Carson’s integrals analytically.
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INTRODUCTION

For the case of an aerial line; his geometry, the constructed material, the earth resistivity and the
involved frequency, determines the line electrical parameters, means, the series impedance (Z) and
the transversal admittance (Y). Due to the little earth transversal electrical field penetration, it is use to
neglect the earth effect in the admittance, so the capacitance and the conductance are calculated
under the assumption that the line is over a perfect infinite conductor plane. By the other hand, it is well
known that the line series impedance is compound by three terms [1], written in equation (1) as,

1=7_+7Z,+Z, Q)

Where Z; is the geometric impedance which is calculated using the magnetic field extern to the
conductors. Z¢ is the conductor’'s internal impedance, which models the effect of the longitudinal
electric field inside the conductors. Z¢ is the earth impedance, which models the effect of the magnetic
fields penetration inside the earth. From the three terms of equation (1), Carson’s integrals are the
base of the earth impedance calculus [2]. In this work it is developed a new solution for these integrals
and evaluates the solutions gives by the Carson series [2], approximate compact formulas [3] and the
numerical solution [4, 5]. There are some standards for ground considerations as [6, 7], so, there are
some works based on this works as [8, 9], others using trunked series as [10] and another’s ones using
similar criteria as for the numerical solution of the Pollaczek’s integral, as in [11, 12]. This work is
organized as follows: first we enounce the knowing Carson series, and then we analyze the solution by
using approximate formulas. We follow with the proposed solution through power series, and then we
make a qualitative analysis of the Carson’s integrals to finish in the analysis of the results and
conclusions.

CARSON SERIES

Considering a uniform line (the line material and the surrounding dielectric are homogeneous) and
neglecting the displacement current, the self and mutual earth impedance described in the Carson
integrals are [2], as it is described in equations (2a) and (2b).

2 =L (o4 j-a)e™  da (22)

22 o a) e i) da @)
T %

Wherep is the air permeability; h;'=h;(Vops) with 0.1 <h;< 200 like the i-esime conductor height;
xi'=xi(Vopo) with 0.1 <x;< 1000 like the distance between conductors;o=2xf with 1x10°<f < 1x10° like
the frequency and 1x10™<c< 1x10™ is the earth conductivity.

Defining the Carson'’s integral [3], given by equation (3),

+o0

](p,q): J.(Jaz +] -a)- e’ ~cos(qa) da 3)

0

for the self-impedance p and g are defined by equations (4a) and (4b) as,

p=2h¢ (4a)
q=0 (4b)
and for the mutual-impedance by equations (5a) and (5b),
p=hg+hg=(h+h ) (5a)
q=Xx¢ (5b)
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being ¢="ops, h the conductor height and x the distance between conductors.
So, equation (2a) and equation (2b) could be written as equations (6a) and (6b) respectively,

70 = 12% 3(2h'0) (6a)

7 =91 (b 4 x) (6b)
2r
Let it be define, p and 0, by equations (7a) and (7b) as,
r=.p*+q° (7a)

0=tan"(q/p) (7b)

Carson’s integrals given by equation (3), could be separated in real and imaginary parts as [3], it is
denoted by equation (8a) as,

J=P+]jQ (8a)
With P and Q given, in terms of p and 0, by equations (8b) and (8c), respectively,
1 2 Vs . 1
P:2|:(lnwj52+4(1—54)+952 +02:|+ﬁ(03_0]) (8b)
1|1 2 T , 1
Q:2|:2+(lnwj(l_s4)_4sz_954 _04:|+ﬁ(61+03) (8c)

Into equation (8b) and equation (8c), y is the Euler's constant and these ¢ and o are the Carson’s
series terms [2], given by equations (9a) to (9h), as follows,

_rcosf r°cos50 r’ cos90

— + — e ga
7T T3 35079011 (%2)
2 6
0_2:(1+1_1j1(r] cosZG—(1+1+1+1—1j1(rJ cos60+ - (9b)
2 4)121\2 2 3 4 8)341\2
o = r’cos30 1’ cos70 N r' cos116 - (9¢)
’ 3*.5 3?.5*.7*.9 3°.5%.77.97.11°.13
4 8
04:(1+1+1—1)1(r) Cos49—(1+1+1+1+1—10j1(r) cos80+:- (9d)
2 3 6)2131\2 2 3 45 4151\ 2
2 6
szzL rj cos26—1(r) cos60+--- (9e)
12102 3141\ 2
, 2 6
s, _L(r sin26—1(r sin60+--- (9f)
121\ 2 3141\ 2
4 8
s, :l(r cos49—1(r cos80+- - (99)
2131\ 2 4151\ 2
, 4 8
s, :1[1’) sin46—1(rj sin80 +- - (9h)
2131\ 2 4151\ 2
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Carson’s series converge to the right solution in the case of r<<5, in other case Carson propose the
solution written in equations (10a) and (10b), [2],

LCOSH_COSZQ 1 cos36 iCOS59+

P: + + e
N2y r? J2r N2 rP (103)
1 cos@ 1 cos30 3 cosbhd
= - 4+ — — e
Q N2 r J2 J2r (10b)

The crossing from one solution (equation (8b) and equation (8c)), to other (equation (10a) and
equation (10b)), is almost arbitrary and until now nobody has determined the exact way to do it. Even
more there are intervals in which none of these formulas give adequate solutions.

SOLUTION BY APPROXIMATE FORMULAS

The process to obtain approximate formulas lies in the substitution of the term [(V(co”+j))-] inside the
Carson’s integral by a function with similar behavior with analytical solution. The proposed function, by
Derry et al. is mentioned in equation (11), as follows [3],

2, - o1 [ iradi
(fo* +j-a)~ L (1-e) (12)
It is shown in figure 1, the comparison between the original integrand (from equation (3)) and the
proposed one (from equation 11). It could be able to note that the approximate function will be a good
solution only if thea value is really big.
By substituting the proposed function into equation (2a) and equation (2b), it is obtained equations
(12a) and (12b) as,

. 'a) +90 . Y _ e—Zha
zi =12 1) . 4q (12a)
27 % 2a
. +o0 —(111+hz )Dt (12b)
«  Jjou ( ﬂaﬁ) e -cos(xar)
Zy ="— _[] 1-e . ~da
2w 2
0.8 T T T T T T - T
c + Exact function
£ t-.;"‘:'\\‘ +—Dery et.al. approximation
5 \
2 0l N B
3 0.6 Y\ hY Real part
z 4 ) 7
04 N /
Eff ¥, Imaginary part
— i Sl /s
- P Vi
@ S S .
= 02r N —— 7
151 * - ——— —
Lf D_ R e + . =
2
09 ! 1 ! ! I ! ! 1 !
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Integration va riable

Fig. 1. Comparison between the exact function and Derry et al. approximation.
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These equations have a well-known analytical solution denoted by equations (13a) and (13b), [3],

76 — ﬂ Inl 1 =
E—ii 272_ n + hi (13a)
ze =L %1n[1 +(4zh, +422)D?] (13b)

wherez=k/¢ and D, = /(i +h, ) +x* with k=1/[j .

The self and mutual impedance like a function of p and g are given by equations (14a) and (14b)
respectively,

' 2k
Z8m = % : In[l + p] (14a)
Zom = ]2‘"“ oIl (4kp 4k ) " +07)] (14b)
VA

SOLUTION TO CARSON’S INTEGRALS THROUGH POWER SERIES

It is developed an approximate new analytical solution to the Carson'’s integrals through power series.
The first step to obtain this solution is the algebraic separation of equation (3), into two parts as is
written in equation (15):

1(p,q)= Tﬂ/az +j-e7 -cos(ga) ~da—Ta-e”’” -cos(qar) - da (15)

Then the radical is expressed as a Newton binomial expansion, but this radical doesn’t have uniform
convergence so previously the integral is separated into two parts to obtain equation (16),

](p q)= jW -cos qa da+_[4/a +j-et cos(qa da - ja e’ cos(qa)- (16)

Now, for each case one has the solutions given by equations (17a) and (17b), respectively,

s (AT

sy W o L3
@ +jf =a+ g s (170)

Substituting equation (17a) and equation (17b) into equation (16), one obtains a series of integrals with
a general form denoted by equation (18),

1(p.q)=2k,

-1

a' e’ -cos(qar) - a+Zc Ia e -cos(ga) -da - ja e -cos(ga) -da (18)

=1

ct—

with n=0,2,4,6,... and m=1,-1,-3,-5,.... Constants k, and c, are calculated with equation (17a) and
equation (17b), respectively.
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Self-lmpedance
To the self-impedance one has =0, so equation (16) takes the algebraic structure of equation (19),

1 +o0 +o0
J(p.0)= Ia“ e da+ Iam e da - ja-e””’ da (19)
0 1 0
withn=0,2,4,6,... and m=1,-1,-3,-5,....

I. Firstintegral
The first integral of equation (19) is solved with the recurrence equation (20a),

-r
a e da=-""+"1p (20a)
pop

withn=1,2,3,4,..., and the first integral solution given by equation (20b)

ct—

Ip,, =

e’ 1
b (20b)

a’-e’ da=—

Ipl,o =

ct—

Il. Second integral
The second integral is separated into three parts denoted by equation (21),

fa“‘ e da = Ta-e"”’ -da +T0{'1 et -da+Ta“‘ e da (22)

1 1 1 1

withm =-3,-5,....

From this integral; the first integral of the right side is grouped with the third integral of equation (19) to
obtain one integral with the same mathematical structure as equation (20a) with n=1, this is denoted by
equation (22) as follows:

Ta~e’”“-da—Ta-e”’“ -da=—ja~e’”“ da (22)
1 0 0

This integral is solved as equation (20a) with n=1, means is equal to Ipy;. Now, by substituting the
superior limit by amax, the second integral of equation (21) is solved by using the power series of e™* to
obtain equation (23) as,

Ip,, = jal et da = Txa‘l -(1—pa+§a2 P +)~ da (23)

This process generates a sequence of integral with the mathematical structure given by equation (24),

i i i . (24)
ja'l e da = ja’l da+ J'da+ Ja" '11106
n#E—
1 1 1 1

The first two integral of the right side of equation (24), are solved directly; the third one is solved with
the recurrence relation denoted by equation (25),

Ta o @, )" B
1 n+1 n+1

(25)
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To complete the solution of the self-impedance, one need to solve the third integral of the right side of
equation (21); this is performed by using the recurrence relation given in equation (26a),

x P o Pama e’ [4
In. = da =
P L e T ) e (268)
withn =2,3,4,..., wherelp,, is denoted in equation (26b) as,
Ip,, = [a*-e™ da (26b)
1
Notice that equation (26b) has the same mathematical structure than equation (23).
Mutual-Impedance
For the mutual-impedance the equation (16) takes the structure given by equation (27) as,
1 +0 +o0
I(p.q)= Ia“ e cos(qa) -da+ Ia“‘ e cos(ga) -da— J.a-e”’“ -cos(ga) -da (27)
0 1 0
with n=0,2,4,6,... and m=1,-1,-3,-5,....
I. Firstintegral
The first integral of equation (27) is solved with the recurrence equation (28a),
I, Jl. - cos qa) da - qez’”senzq B pez"“coszq . nez’"coszq _ n(n : 1)Ip22'” ) 2nplp2 - (28a)
0 p-+q p+q p+q p+q p'+q°
with n=2,3,4,... and the first two integrals given by equations (28b) and (28c),
I1g=l’"”' d _qe senq pe cosq p
P, !e cos(qa) o= o 7 P g (28b)

[ e’cos 1 I
Ipm :_O[a'e " ~COS(th) da = pz H; - pz +qz z f;o (28C)

Il. Second integral
The second integral of equation (27) is separated into three parts given by equation (29) as,

_f - cos qa) da = _[a e’ cos(qa) do + _[a -cos(qa) -doa +Ta‘" e -cos(qa) -da (29)

with m=-3,-5,.... Now, the first integral of the right side of equation (19) is grouped with the third integral
of equation (27) to obtain equation (30),

Ta-e"’“ -cos(qa) -da —Tme”’“ -cos(qer) -da = —jwe”’“ -cos(ga) -da (30)
1 0 0

This integral is solved as equation (28c).
Now, by changing the superior limit by ama, the third integral of equation (29) is solved with the
following recurrence equation for n=2,3,4,.... to obtain equations (31a) and (31b),

e cos(qa). e e’"™ cosqa,, e’cosq plp,.. 4qla,,,
Ip, = [ CMEET gy - -9
e e T 78 A Y B v ey (312)
i Sen(qa)' e’P"‘ e”m"‘“" Senqa max e’ﬁsenq pIa2 n-1 quz n-1
In, = | ————.da=- + - : : 31b
e e T e ] ) ) ) (310)
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To solve equation (31a) and equation (31b), it is necessary to solve the following two integrals where
Ip,1 is equal to the second integral of equation (29) given by equation (32a) and la,; is given by
equation (32b) respectively,

Ip,, = [a" e -cos(ga)-da (32a)

In,, = .[a” e sen(qa)-da (32b)

The integrals denoted by equation (32a) and (32b) are solved by using the power series of e™* as it is
written in equation (33a) and (33b),

Ip,, = J'al e cos(ga)-da = Txa'l -(1—pa +p7oz2 —~-J~cos(qa)-da (33a)
1 1
@ max @ max 2
I, = .[a'l e sen(ga)-da = j a’ -(1pa+pzaz -oo)sen(qa)vda (33b)
1 1

The algebraic manipulation of these integrals conduce to equations (34a) and (34b),

@ max @ max

Ip,, = J‘oz'l ~cos(qa)'da+ I (—p+éa—§a2 +---)~cos(qa)~da (34a)

@ max @ max

oy = J.a'7~sen(qa)'da+ J (—p+éa—§a2+--~)-sen(qa)~da (34b)

1

In

The second integral of equation (34a) and equation (34b) generate integrals with the mathematical
structure denoted by equations (35a) and (35b),

L
Tc,= [ a"-cos(ga) dawithn=0,1,234.... (35a)
1

T
Ts,= [ a"-sen{ga)-dawithn=01.2,34.... (35b)
1

The recurrence relations to solve these equations are given by equations (36a) and (36b), respectively,

n

n -1
(a max ) ‘senqa,.. seng . ﬂ(a max ) cosqa,. mncosq n(n—1)Tc,,

Tc, = (36a)
q q q’ q’ q’
n n-1
TSn __ (a max) Cosqamax + Cosq + Tl(a max) Zsenamax _ nseznq _ n(n _12)TS,,_2 (36b)
q q q q q
The first two terms of each recurrence relation are written in equations (36c¢) to (36f) as,
senqa .. sen
Te, = 2% me _ SENG (36¢)
q q
R 60
q q q q
cosqa ... cos
Ts, = — o1 % | €OSG (366€)

q q
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amax COos amax COS Senamax sen.
Tsl = ( ) L + 1 + 2 - zq (360
q q q q

The first integral of equation (34a) and equation (34b), are solved by using the power series of cos (qo)
and sin(goa), so one arrives to equations (37a) and (37b), as follows:

aiflx* -cos(qa)- de :TX a’ [g(_ 12253)!“)24 J “da (37a)
Ia -sen(ga)-da = j. a’ [ZMJ-da (37b)

The power series of trigopnometric functions don’t have uniform convergence; this means that they don't
have convergence for every limit; in this case they have convergence only when one has gqo<2r. When
the argument of the trigonometric function doesn’t comply with this restriction, it is necessary to modify
the expressions; this process yields to equations (38a) and (38b), as follows,

@ max 27 3z @ max

fa'l -cos(qar)-da = J.az’1 -cos(qa)- da + J.a'l -cos(qa)-dor +---+ J.a’l -cos(qar)- dex (38a)

2z nx

_[a -sen(ga)-de = _[a -sen(qa)-dor + _[a -sen(ga)-do+---+ J'a -sen(ga)-da (38b)
In equation (38a) and equation (38b), n is an integer such that nn corresponds to qa value to obtain the
condition nr<amax< (N+1)w. The next step is to move the functions into the interval in which converge
restrictions are reaching it, so one obtains equations (39a) and (39b), respectively,

@ max 27 27 @ max—(n=1)7

Ia'l -cos(qoz)wia::jo:'1 ~cos(qa)~da—j%~da+m+ I Om[~da (39a)
@imax B 27 B Z”SEH(&]Q) @ max—(n-1)7 sen(qa)

ja ~sen(qa)~da:ja ~sen(qa)~da—'|‘m~da+m+ j mdo{ (39b)

Now, the power series of the trigonometric functions are used; initially it is taken the first integrals from
equation (39a) and from equation (39b) to obtain equations (40a) and (40b),

_[a cos(qa da = J' +f[—2‘a Ea —%a +jda (40a)
fa" -sen(qa)-ch:q_!fda + f[—%az +%za4 —%aﬁ +Jda (40b)

These integrals are solved directly; then the power series are substituted in the rest of the integrals to
obtain new integrals with the mathematical structure given by equation (41),

m=0,2,4,6,8,...for function cos

27 m

j @ p dawith im=1,3,5,7,9,...for function sin (41)
s k=nz, n=12345,...,N

segmentos

The generalized solution for even m is denoted by equation (42a),

J. +kr7la IZ kla"'zda-t-J
a

m

da (42a)

a+k

By the other hand, the generalize solution for odd m is denoted by equation (42b),
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2 o 2 L _27[ m
'[a+kda_'[;_(_1)k a"da '[a+kda (42b)

Like this, one has an analytical new solution for the Carson’s integrals through power series.

QUALITATIVE ANALYSIS OF CARSON’S INTEGRALS

To realize the analysis of the Carson’s integrals behavior, these are solved by the Romberg integration
method. These solutions will be the point of reference, it is important to note that the numerical
implementation is a rigid solution in which one used millions of points if it is necessary to have the
preset error, for this reason sometimes the process is slow but in every case one obtain a very trust full
solution. Initially one takes the four variable parameters which are fixed to one value, then one varies
just one of them to obtain the results showed in figures 2a 2b, 2c and 2d. The fixed values (base
values) are h;=40, x;=5, f=60 and ¢=0.01.

25 :
—e— Real part of 7 self (B)
a Y A H
E o¥e, (A) *— Imag part of Z self L L e e e e SEL AN S e o S S oo B
e T ¥ . - . !
O: . . Real part O{Z. mutual O_ 08 . Imaginary part —e— Real part of 7 self ]
l:.l‘ 1.5+ T e o * Imag part of Z mutual | ey . ‘ ® Imag part of 7 self
B I R d e .. 5 0.6 Real part of Z mutual |
o 1k maginary parl o - ; - .
- | S = Imag, part of Z mutual
2 Real part "+ e L P
05, & o B . e
2 A e SO PP, 02t % T 4
< o - Real part L Y .
] 3 z 1 0 - : — M —————— R
10 10 L 10 0 200 400 600 800 1000
Earth conductivity in Siemens-mt Distance between conductors in meters

5 — . - . e e et e
@ (@) [ e Real part of Z self E o D) Real part of / self
= £ 4l e ( *— Imag part of Z self
2 *— Imag part of Z self O * . ’
53 . . = ~ Real part of Z mutual

Real part of Z mutual - e
g Imaginary part o Im art of 7 tual N3 ., Imag part of Z mutual
N - ginary | mag part of Z mutual || -
- a .
3 158 Real part "E 2t ., . Imaginary part E
'g ¥ .~ g = .Rt-'al part e,
e s TR e g g < ¥ -
£ S T TR . _ PP PP, " + .
D A e e e S SRR AP 0—-—:_: :: :. :“3. 0’ ._‘.u.: '.;—.T_.J.‘_.hsh’?“r—‘e—f,.._g_..
0 50 100 150 200 100 1070 100 107 100 100 100 100 10 100 10 10
Conductor height (by 2) in meters Frequency in Hz

Fig. 2. Integral solution for the self and mutual impedance changing A) sigma, B) distance between
conductors, C) conductor height and D) frequency.

From the results showed in figure 2, one could deduce that every single parameter makes that Z value
changes in different way, so to take into account the combined effect of these parameters, it is used
the p and g variables of the Carson’s integrals and all the combinations are referred to these variables.
One specific combination of hy, x;, f and o gives like a result some values of p and g; to take into
account all possible variations inside the established intervals according with equation (2), it is
obtained the minimum and maximum values of p and q given by equations (43a) to (43d), as follows,

pmin = hijmin 27zfmin/’l0min = ]‘677 (43a)
pmax = hijmax 279“maxll'l6max = 164 (43b)
qmin = Xijmin 27ycmin/’lo-min = 1677 (430)
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qmax = Xijmax Z#maxﬂo-max ; 164 (43d)

The previous equations indicate that it could be possible to evaluate the effect of the variations of hj,
xj, f and o in the entire established interval by using the variation of p and g from their minimums to
their maximums. To realize the analysis in base on p and q it could be notice that these values are
connected each other because they share one term which could be denoted by equation (44) as,

8o =+ 27960/10-0 (44)

Thus if one has one p value, it could be calculated in its limits by equations (45a) and (45b) as,

p.=hij,.8, (45a)

p.=hij.8, (45b)
So one obtains equations (46) and (47) as follows,

81 = P/ N (46)

8> = P/ Miji, (47)

Because this value needs to be incorporated into g, their inferior and superior limits are given by
equations (48) and (49) respectively as,

Tor = XUy = (V0 1 (48)
Q0 = X1 8 = (X M . (49)

In this way the interval of g variation for one specific p is denoted by equation (50),
g =[50 B X /i . (50)

The figure 3, shows one graphical scheme of the q variation for one specific p; the dark line denotes
the region in which the integral (here denoted by F(p,q)) has solution, which means for one specific p
the integral F(p,q) is solved only in the region limited between qmin and gmax.

F(p.q) 4 q

qmax

Prin Px Prmax p

Fig. 3. Region in which F(p,q) has solution, q is denoted like a function of p.

ANALYSIS OF THE RESULTS

One has for the self-impedance p=hij(\/muc) and g=0 [3], so the self-impedance is function solely of p.
While figure (4a), shows the results for the real part, figure (4b), shows the results for the imaginary
one. Taking into account that the Carson’s series solution is chosen like the best one (lower error)
between the two Carson’s proposed formulation. For both cases it is taken the Romberg integration
results like a reference; means, the errors are referred to these results. For the mutual impedance one
has p=(hi+h;)¢ and g=x¢ with d»=Vouo [3]. Figure 5, shows the obtained results taking the solution of
the Romberg integral as a reference. Here, as for the self-impedance, it is taken the best Carson’s
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solution, nevertheless there are big errors in some specific points in which no one of the Carson’s
series converge; for this reason it is necessary to know, previously to the use of Carson’s series, if one
is in the non-convergence zone. The variables p and g are discretized from the minimum to the
maximum value taken 100 samples logarithmically spaced, for this reason in figures 5 and 6, p and g
are in terms of number of samples. As it was showed in figure 3, there are some samples that not exist
because g is function of p and for one specific p there are only some g's.

0.4, . . . 10
hﬁ""-\ + Romberg integration :
0.35 "y ——Dery et.al. aproximation | 3
= % + Carson's series solution én 2
# 03 L | Power series solution £ ..
E 1 3 - at
2 025~ § \ -3 .
£ : | £ .
E 02~ i34 4 4 e s
< : \ E
Pl = ¥ Y Ty w
=015 i g
T T \ & —_—_—
Z 01 i, A g +~ Romberg integration
= ] \ £ 2|+ Dery etal. aproximation T 1
g L o 2 ery | ! .
= 0,05~ v ! \ 4 £ +Carson's series solution e
= + Power series solution
0 : : e S 0 1 1 1 \\.."""m.-w.
10° 10* 10° 10° 10° 10* 10° 10 10” 10 10 10
p=hij*sqrt{2°pi**mu“sigmma) p=hijsgrt(2* pi*{* mu*sigmma)

Fig. 4. Self-impedance. A) Real term. B) Imaginary term.
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2 R || | —
¢ T 3
§ 21 B
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0 50 100 v 100 100
q variable q variable
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5017 SR S R
407 4l
-] H L T T,
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§ z
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Fig. 5. A) Mutual impedance. B) Error in % of Gary et.al. approximation. C) Error in % of Carson’s
approximation. D) Error in % of the proposed approximation.
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Figure 6, shows the contour maps for the mutual impedance in term of p and q samples. A figure 6a,
show the points in which the impedance exists because corresponds to a logical p and q samples.
Figures 6b, 6¢, 6d, show the zone of maximum error for each approximation, this zone corresponds to
the interval between samples 65-72 for p and 35 to 65 for q. The remaining impedances, for all cases,
have lower errors, so it is not important to show them. Figure 6, shows the error distribution for all
approximations; from this figure it's noticeable that there are no regions in which you obtain better
solutions with Carson’s series and/or Gary et al., approximation than with the proposed solution. By the
other hand, it is recommendable the use of simple formulas, as Gary et al., ones in regions in which
they have low error, and use the proposed solution in regions in which Gary et al., approximation has
not acceptable errors.

Gary et. al. error‘contour map

Impedance amplitude in Ohms - 85 12
100 T T "
60 10
80
55
60 ] - .
40 1 . 45
20 1 40
1
' ‘ ' S 68 70 72

[53]

[+)]

q variable in term of samples

g variable in term of samples

ud

N @ B 1O O~ ®
B~

[}%]

2 40 60 80 100
. p variable in term of samples . . p variable in term of samples .
A) B)

Carsan's series erfor contour map - Power series errdr cantour map

45
2 o
35 AT 3.5
30 3
o5 2.5
20 _ >
15 15
10 ' 1
5 0.5
66 68 70 72 35 ‘

66 68 70 72
. p variable in term of samples p variable in term of samples

C) D)

q variable in term of samples

q variable in term of samples

Fig. 6. Contour maps for the mutual impedance in terms of samples. A) Amplitude of the mutual
impedance map. B) Error in % of Gary et al.,, approximation map. C) Error in % of Carson’s
approximation map. D) Error in % of the proposed approximation map.

CONCLUSIONS

In this work it is developed a new solution for the Carson'’s integrals, the proposed solution is based on
the definition of the upper limit of the integral, the power series expansion and the integral separation
into some intervals. The new solution in comparison with the existing ones, taking the numerical
solution like a reference, gives betters results; so, although its complexity this is a new and novelty
analytical solution for the Carson’s integrals and it is a really good option to obtain the ground
impedance in region in which the existing solutions have not acceptable errors.
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