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Abstract/ Resumen  
The problem of electromagnetic waves propagation in overhead transmission lines has apparently 
not been solved in a sound manner yet. While the problem does not have an exact analytical 
solution when considering the presence of the actual surface of the earth, its approximate solution 
introducing the oretical simplifications is of formidable practical interest. Using quasi-static 
approximations Carson obtained integral equations to calculate the electromagnetic field due to a 
horizontal current carrying wire which is above a lossy ground plane. Carson himself proposed the 
first solution to these expressions using power series expansions which does not possess uniform 
convergence and since then there have been efforts to get a better solution. In this sense two clear 
approaches have been essentially followed. The first one consists on modifying the integrand in 
such a way that an analytic solution can be obtained. The second one is based on using numerical 
integration schemes. 
Key words: ground returns impedance, Carson’s integrals, power series, and aerial transmission 
lines. 
 
El problema de la propagación de ondas electromagnéticas en líneas de transmisión aéreas aún 
no ha sido resuelto de manera definitiva. Si bien el problema no posee una solución analítica 
exacta cuando se considera la presencia de la superficie real de la tierra, su solución aproximada, 
introduciendo simplificaciones teóricas es de gran interés práctico. Usando aproximaciones cuasi-
estáticas, en 1926 Carson obtuvo ecuaciones integrales para el cálculo del campo 
electromagnético generado por la corriente de un conductor horizontal sobre un plano de tierra 
imperfecto. La primera solución la propone el mismo Carson utilizando expansiones en series, las 
cuales no poseen convergencia uniforme y desde entonces se han hecho esfuerzos por tener una 
mejor aproximación. Se han seguido dos enfoques claros, el primero consiste en introducir 
modificaciones en el integrando de manera que sea posible obtener una solución analítica. El 
segundo, se basa en la utilización de métodos de integración numérica. 
Palabras clave: impedancia de retorno por tierra, integrales de Carson, series de potencia, líneas 
de transmisión aérea. 
 
Methodology – Because Carson’s integrals have a decreasing exponential term, the infinite upper 
limit can be substituted by a finite limit without altering the result beyond a preset error. With such 
limit substitution and using power series a new analytic solution with uniform convergence for all 
cases is obtained in this work. For comparison purposes Carson´s series and approximated 
compact formulas published elsewhere are used. As a gold standard the numerical solution of 
Carson's integral using Romberg integration with an error of 10-21 is used. 
Findings – The final results verify that the proposed solutions converge for all test cases, unlike 
Carson's formulas, and are more accurate than compact expressions. 
Originality – It is developed a new way to solve Carson’s integrals analytically. 
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INTRODUCTION 
 
For the case of an aerial line; his geometry, the constructed material, the earth resistivity and the 
involved frequency, determines the line electrical parameters, means, the series impedance (Z) and 
the transversal admittance (Y). Due to the little earth transversal electrical field penetration, it is use to 
neglect the earth effect in the admittance, so the capacitance and the conductance are calculated 
under the assumption that the line is over a perfect infinite conductor plane. By the other hand, it is well 
known that the line series impedance is compound by three terms [1], written in equation (1) as, 

CEG ZZZZ ++=  (1) 

Where ZG is the geometric impedance which is calculated using the magnetic field extern to the 
conductors. ZC is the conductor’s internal impedance, which models the effect of the longitudinal 
electric field inside the conductors. ZE is the earth impedance, which models the effect of the magnetic 
fields penetration inside the earth. From the three terms of equation (1), Carson’s integrals are the 
base of the earth impedance calculus [2]. In this work it is developed a new solution for these integrals 
and evaluates the solutions gives by the Carson series [2], approximate compact formulas [3] and the 
numerical solution [4, 5]. There are some standards for ground considerations as [6, 7], so, there are 
some works based on this works as [8, 9], others using trunked series as [10] and another’s ones using 
similar criteria as for the numerical solution of the Pollaczek’s integral, as in [11, 12]. This work is 
organized as follows: first we enounce the knowing Carson series, and then we analyze the solution by 
using approximate formulas. We follow with the proposed solution through power series, and then we 
make a qualitative analysis of the Carson’s integrals to finish in the analysis of the results and 
conclusions. 
 
CARSON SERIES 
 
Considering a uniform line (the line material and the surrounding dielectric are homogeneous) and 
neglecting the displacement current, the self and mutual earth impedance described in the Carson 
integrals are [2], as it is described in equations (2a) and (2b). 
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Whereµ is the air permeability; hi’=hi(√ωµσ) with 0.1 ≤hi≤ 200 like the i-esime conductor height; 
xi’=xi(√ωµσ) with 0.1 ≤xi≤ 1000 like the distance between conductors;ω=2πf with 1x10-3≤f ≤ 1x108 like 
the frequency and 1x10-4≤σ≤ 1x10-1 is the earth conductivity. 
Defining the Carson’s integral [3], given by equation (3), 
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for the self-impedance p and q are defined by equations (4a) and (4b) as, 

φ2hp =  (4a) 

0q =  (4b) 

and for the mutual-impedance by equations (5a) and (5b), 

( )φφφ jiji hhhhp +=+=  (5a) 

φxq =  (5b) 
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being φ=√ωµσ, h the conductor height and x the distance between conductors. 
So, equation (2a) and equation (2b) could be written as equations (6a) and (6b) respectively, 
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( )xhhJjZ ik
E ′′+′⋅= ,

2 21π
ωµ  (6b) 

Let it be define, p and θ, by equations (7a) and (7b) as, 

22 qpr +=  (7a) 

( )pq1tan −=θ  (7b) 

Carson’s integrals given by equation (3), could be separated in real and imaginary parts as [3], it is 
denoted by equation (8a) as, 

jQPJ +=  (8a) 

With P and Q given, in terms of p and θ, by equations (8b) and (8c), respectively, 
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Into equation (8b) and equation (8c), γ is the Euler’s constant and these k and σk are the Carson’s 
series terms [2], given by equations (9a) to (9h), as follows, 
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Carson’s series converge to the right solution in the case of r<<5, in other case Carson propose the 
solution written in equations (10a) and (10b), [2], 
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The crossing from one solution (equation (8b) and equation (8c)), to other (equation (10a) and 
equation (10b)), is almost arbitrary and until now nobody has determined the exact way to do it. Even 
more there are intervals in which none of these formulas give adequate solutions. 
 
 
SOLUTION BY APPROXIMATE FORMULAS 
 
The process to obtain approximate formulas lies in the substitution of the term [(√(α2+j))-α] inside the 
Carson’s integral by a function with similar behavior with analytical solution. The proposed function, by 
Derry   et al. is mentioned in equation (11), as follows [3], 
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It is shown in figure 1, the comparison between the original integrand (from equation (3)) and the 
proposed one (from equation 11). It could be able to note that the approximate function will be a good 
solution only if theα value is really big. 
By substituting the proposed function into equation (2a) and equation (2b), it is obtained equations 
(12a) and (12b) as, 
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                 Fig. 1. Comparison between the exact function and Derry   et al. approximation. 
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These equations have a well-known analytical solution denoted by equations (13a) and (13b), [3], 
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where φkz =  and ( ) 22 xhhD kiik ++=  with jk 1= . 
The self and mutual impedance like a function of p and q are given by equations (14a) and (14b) 
respectively, 
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SOLUTION TO CARSON’S INTEGRALS THROUGH POWER SERIES 
 
It is developed an approximate new analytical solution to the Carson’s integrals through power series. 
The first step to obtain this solution is the algebraic separation of equation (3), into two parts as is 
written in equation (15): 
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Then the radical is expressed as a Newton binomial expansion, but this radical doesn’t have uniform 
convergence so previously the integral is separated into two parts to obtain equation (16), 

( ) ( ) ( ) ( )∫∫∫
+∞

−
+∞

−− ⋅⋅⋅−⋅⋅⋅++⋅⋅⋅+=
01

2
1

0

2, ααααααααα ααα d qcosed qcosejd qcosejqpJ ppp  (16) 

Now, for each case one has the solutions given by equations (17a) and (17b), respectively, 

( ) +





 +

−−





 −

+





 +

=+ 422
1

2

2
1

8
1

2
1

2
1

2
1

ααα
jjjj  (17a) 

( ) −−++=+ 53
2
1

2

48
3

8
1

2 ααα
αα

jjj  (17b) 

Substituting equation (17a) and equation (17b) into equation (16), one obtains a series of integrals with 
a general form denoted by equation (18), 
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with n=0,2,4,6,… and m=1,-1,-3,-5,…. Constants k l and c l are calculated with equation (17a) and 
equation (17b), respectively. 
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Self-Impedance 
To the self-impedance one has q=0, so equation (16) takes the algebraic structure of equation (19), 
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with ,6,4,2,0=n  and ,5,3,1,1 −−−=m . 
 
I. First integral 
The first integral of equation (19) is solved with the recurrence equation (20a), 
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with ,4,3,2,1=n , and the first integral solution given by equation (20b) 
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II. Second integral 
The second integral is separated into three parts denoted by equation (21), 
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with ,5,3 −−=m . 
From this integral; the first integral of the right side is grouped with the third integral of equation (19) to 
obtain one integral with the same mathematical structure as equation (20a) with n=1, this is denoted by 
equation (22) as follows: 
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This integral is solved as equation (20a) with n=1, means is equal to Ip1,1. Now, by substituting the 
superior limit by αmax, the second integral of equation (21) is solved by using the power series of e-pα to 
obtain equation (23) as, 
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This process generates a sequence of integral with the mathematical structure given by equation (24), 
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The first two integral of the right side of equation (24), are solved directly; the third one is solved with 
the recurrence relation denoted by equation (25), 
 

( )
1

1
1

1
max

1

max

+
−

+
=⋅

+

∫ nn
d

n
n

α
αα

α

 (25) 

 
 



- 18 - 

José Alberto Gutiérrez Robles y otros 

 

                                     Ingeniería Energética Vol. XXXVI, 1/2015,  p.12-26, Enero /Abril  ISSN 1815 - 5901 

 
 
To complete the solution of the self-impedance, one need to solve the third integral of the right side of 
equation (21); this is performed by using the recurrence relation given in equation (26a), 
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with ,4,3,2=n , whereIp2,1 is denoted in equation (26b) as, 
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Notice that equation (26b) has the same mathematical structure than equation (23). 
 
Mutual-Impedance 
For the mutual-impedance the equation (16) takes the structure given by equation (27) as, 
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with n=0,2,4,6,… and m=1,-1,-3,-5,…. 
 
I. First integral 
The first integral of equation (27) is solved with the recurrence equation (28a), 
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with n=2,3,4,… and the first two integrals given by equations (28b) and (28c), 
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II. Second integral 
The second integral of equation (27) is separated into three parts given by equation (29) as, 
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with m=-3,-5,…. Now, the first integral of the right side of equation (19) is grouped with the third integral 
of equation (27) to obtain equation (30), 
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This integral is solved as equation (28c). 
Now, by changing the superior limit by αmax, the third integral of equation (29) is solved with the 
following recurrence equation for n=2,3,4,…. to obtain equations (31a) and (31b), 
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To solve equation (31a) and equation (31b), it is necessary to solve the following two integrals where 
Ip2,1 is equal to the second integral of equation (29) given by equation (32a) and Ia2,1 is given by 
equation (32b) respectively, 
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The integrals denoted by equation (32a) and (32b) are solved by using the power series of e-pα as it is 
written in equation (33a) and (33b), 
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The algebraic manipulation of these integrals conduce to equations (34a) and (34b), 
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The second integral of equation (34a) and equation (34b) generate integrals with the mathematical 
structure denoted by equations (35a) and (35b), 

with n=0,1,2,3,4…. (35a) 

with n=0,1,2,3,4…. (35b) 

The recurrence relations to solve these equations are given by equations (36a) and (36b), respectively, 
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 (36b) 

The first two terms of each recurrence relation are written in equations (36c) to (36f) as, 

q
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( )
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q
q

q
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ααα  (36f) 

The first integral of equation (34a) and equation (34b), are solved by using the power series of cos (qα) 
and sin(qα), so one arrives to equations (37a) and (37b), as follows: 
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The power series of trigonometric functions don’t have uniform convergence; this means that they don’t 
have convergence for every limit; in this case they have convergence only when one has qα≤2π. When 
the argument of the trigonometric function doesn’t comply with this restriction, it is necessary to modify 
the expressions; this process yields to equations (38a) and (38b), as follows, 
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In equation (38a) and equation (38b), n is an integer such that nπ corresponds to qα value to obtain the 
condition nπ≤αmax≤ (n+1)π. The next step is to move the functions into the interval in which converge 
restrictions are reaching it, so one obtains equations (39a) and (39b), respectively, 

( ) ( ) ( ) ( )
( )

( )

∫∫∫∫
−−

⋅
−+

++⋅
+

−⋅⋅=⋅⋅
πα

π

π

π

πα

α
πα

α
α

πα
α

αααααα
122

1

1-

1

1-
maxmax

1

n

d
n

qcos
d

qcos
dqcosdqcos 

 (39a) 

( ) ( ) ( ) ( )
( )

( )

∫∫∫∫
−−

⋅
−+

++⋅
+

−⋅⋅=⋅⋅
πα

π

π

π

πα

α
πα

α
α

πα
α

αααααα
122

1

1-

1

1-
maxmax

1

n

d
n

qsen
d

qsen
dqsendqsen 

 (39b) 

Now, the power series of the trigonometric functions are used; initially it is taken the first integrals from 
equation (39a) and from equation (39b) to obtain equations (40a) and (40b), 
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These integrals are solved directly; then the power series are substituted in the rest of the integrals to 
obtain new integrals with the mathematical structure given by equation (41), 
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The generalized solution for even m is denoted by equation (42a), 
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By the other hand, the generalize solution for odd m is denoted by equation (42b), 
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Like this, one has an analytical new solution for the Carson’s integrals through power series. 
 
 
QUALITATIVE ANALYSIS OF CARSON’S INTEGRALS 
 
To realize the analysis of the Carson’s integrals behavior, these are solved by the Romberg integration 
method. These solutions will be the point of reference, it is important to note that the numerical 
implementation is a rigid solution in which one used millions of points if it is necessary to have the 
preset error, for this reason sometimes the process is slow but in every case one obtain a very trust full 
solution. Initially one takes the four variable parameters which are fixed to one value, then one varies 
just one of them to obtain the results showed in figures 2a 2b, 2c and 2d. The fixed values (base 
values) are hij=40, xij=5, f=60 and σ=0.01. 
 

 
From the results showed in figure 2, one could deduce that every single parameter makes that Z value 
changes in different way, so to take into account the combined effect of these parameters, it is used 
the p and q variables of the Carson’s integrals and all the combinations are referred to these variables. 
One specific combination of hij, xij, f and σ gives like a result some values of p and q; to take into 
account all possible variations inside the established intervals according with equation (2), it is 
obtained the minimum and maximum values of p and q given by equations (43a) to (43d), as follows, 

7
minminminmin 12 −≅= efhijp µσπ  (43a) 

4
maxmaxmaxmax 12 efhijp ≅= µσπ  (43b) 

7
minminminmin 12 −≅= efxijq µσπ  (43c) 

 
 

 
 

Fig. 2. Integral solution for the self and mutual impedance changing A) sigma, B) distance between 
conductors, C) conductor height and D) frequency. 
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4
maxmaxmaxmax 12 efxijq ≅= µσπ  (43d) 

The previous equations indicate that it could be possible to evaluate the effect of the variations of hij, 
xij, f and σ in the entire established interval by using the variation of p and q from their minimums to 
their maximums. To realize the analysis in base on p and q it could be notice that these values are 
connected each other because they share one term which could be denoted by equation (44) as, 

OOO fg µσπ2=  (44) 

Thus if one has one p value, it could be calculated in its limits by equations (45a) and (45b) as, 

1max ghijpx =  (45a) 

2min ghijpx =  (45b) 

So one obtains equations (46) and (47) as follows, 

max1 hijpg x=  (46) 

min2 hijpg x=  (47) 

Because this value needs to be incorporated into q, their inferior and superior limits are given by 
equations (48) and (49) respectively as, 

( ) xini phijxijgxijq maxmin1min ==  (48) 

( ) xfin phijxijgxijq minmax2max ==  (49) 

In this way the interval of q variation for one specific p is denoted by equation (50), 

[ ] xphijxijhijxijq minmaxmaxmin=  (50) 

The figure 3, shows one graphical scheme of the q variation for one specific p; the dark line denotes 
the region in which the integral (here denoted by F(p,q)) has solution, which means for one specific p 
the integral F(p,q) is solved only in the region limited between qmin and qmax. 

 
 
ANALYSIS OF THE RESULTS 
 
One has for the self-impedance p=hij(√ωµσ) and q=0 [3], so the self-impedance is function solely of p. 
While figure (4a), shows the results for the real part, figure (4b), shows the results for the imaginary 
one. Taking into account that the Carson’s series solution is chosen like the best one (lower error) 
between the two Carson’s proposed formulation. For both cases it is taken the Romberg integration 
results like a reference; means, the errors are referred to these results. For the mutual impedance one 
has p=(hi+hj)φ and q=xφ with φ=√ωµσ [3]. Figure 5, shows the obtained results taking the solution of 
the Romberg integral as a reference. Here, as for the self-impedance, it is taken the best Carson’s 

 
 

Fig. 3. Region in which F(p,q) has solution, q is denoted like a function of p. 

qmin

qmax

pmin pmax

q

p

F(p,q)

px

qini

qfin
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solution, nevertheless there are big errors in some specific points in which no one of the Carson’s 
series converge; for this reason it is necessary to know, previously to the use of Carson’s series, if one 
is in the non-convergence zone. The variables p and q are discretized from the minimum to the 
maximum value taken 100 samples logarithmically spaced, for this reason in figures 5 and 6, p and q 
are in terms of number of samples. As it was showed in figure 3, there are some samples that not exist 
because q is function of p and for one specific p there are only some q’s. 
 

 

 
 

 
A)       B) 

 
Fig. 4.  Self- impedance. A) Real term. B) Imaginary term. 

  
A)      B) 

 

  
C)      D) 

 
Fig. 5. A) Mutual impedance. B) Error in % of Gary et.al. approximation. C) Error in % of Carson’s 
approximation. D) Error in % of the proposed approximation. 
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Figure 6, shows the contour maps for the mutual impedance in term of p and q samples.  A figure 6a, 
show the points in which the impedance exists because corresponds to a logical p and q samples. 
Figures 6b, 6c, 6d, show the zone of maximum error for each approximation, this zone corresponds to 
the interval between samples 65-72 for p and 35 to 65 for q. The remaining impedances, for all cases, 
have lower errors, so it is not important to show them. Figure 6, shows the error distribution for all 
approximations; from this figure it’s noticeable that there are no regions in which you obtain better 
solutions with Carson’s series and/or Gary et al., approximation than with the proposed solution. By the 
other hand, it is recommendable the use of simple formulas, as Gary et al., ones in regions in which 
they have low error, and use the proposed solution in regions in which Gary et al., approximation has 
not acceptable errors. 

 
 
CONCLUSIONS 
 
In this work it is developed a new solution for the Carson’s integrals, the proposed solution is based on 
the definition of the upper limit of the integral, the power series expansion and the integral separation 
into some intervals. The new solution in comparison with the existing ones, taking the numerical 
solution like a reference, gives betters results; so, although its complexity this is a new and novelty 
analytical solution for the Carson’s integrals and it is a really good option to obtain the ground 
impedance in region in which the existing solutions have not acceptable errors. 

  
A)      B) 

 

  
C)      D) 

 
Fig. 6. Contour maps for the mutual impedance in terms of samples. A) Amplitude of the mutual 
impedance map. B) Error in % of Gary et al., approximation map. C) Error in % of Carson’s 
approximation map. D) Error in % of the proposed approximation map. 
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