Universidad Tecnológica de La Habana José Antonio Echeverría

Artículo de investigación científica y tecnológica

Análisis del efecto de la instalación de 21,8 MW energía solar fotovoltaica en la Subestación Contramaestre 110/34,5 kV

Analysis of the effect of installing 21,8 MW of photovoltaic solar energy at the Contramaestre 110/34,5 kV substation

Javier Calero Roman^I, Yanelia Febles Columbié^{I,*}, Nelson Alexey Castro Torres ^{II}, David Calas Cardero ^{II}

Recibido: 2 de agosto de 2025 Aprobado: 11 de octubre de 2025

Este documento posee una <u>licenciaCreativeCommonsReconocimiento-NoComercial4.0</u>internacional

RESUMEN/ ABSTRACT

Con el propósito de satisfacer la demanda de energía, disminuir la dependencia de los combustibles fósiles importados e incrementar la estabilidad y confiabilidad del sistema eléctrico en Cuba, se lleva a cabo un programa de desarrollo de las fuentes renovables. En este trabajo, se realiza un análisis de los impactos de la instalación de 21,8 MW energía solar fotovoltaica asociados a la Subestación Contramaestre 110/34,5 kV. Para el análisis, se caracterizó dicha subestación y los indicadores más importantes para la evaluación de su estado técnico, se analizaron posibles variantes para la asociación del parque a la subestación; resultando la más factible su la instalación a través de las líneas UU4390 y UU4395, garantizando así una operación dentro de los parámetros establecidos, mejorando los indicadores técnicos y aumentando la calidad del servicio eléctrico prestado. Con la inversión, se ahorran9098 ton/año de combustible fósil, lo que equivale a 5156 MUSD/año.

Palabras clave: solar fotovoltaica, subestación, factibilidad.

In order to meet energy demand, reduce dependence on imported fossil fuels, and increase the stability and reliability of the Cuban electrical system, a renewable energy development program is being implemented. This paper analyzes the impacts of installing 21.8 MW of solar photovoltaic energy at the Contramaestre 110/34.5 kV substation. For the analysis, the substation was characterized, along with the most important indicators to assess its technical condition. Possible alternatives for connecting the wind farm to the substation were analyzed. The most viable option was installation through lines UU4390 and UU4395, thus ensuring operation within established parameters, improving technical indicators, and increasing the quality of the electrical service provided. This investment saves 9,098 tons of fossil fuels per year, equivalent to USD 5,156 million annually.

Keywords: solar photovoltaic, substation, feasibility.

INTRODUCCIÓN

Es una realidad indiscutible que la producción de energía, en particular la generación eléctrica y su crecimiento sostenido, constituyen un elemento indispensable para el progreso económico y social de cualquier país [1-3]. La producción de energía, el crecimiento económico y la reducción de la pobreza están estrechamente conectados. Una energía de calidad, con un suministro estable y a precios razonables es crucial para mejorar los niveles de vida de la población [4, 5].

¹ Empresa Eléctrica Santiago de Cuba. Santiago de Cuba, Cuba

^{II}Universidad de Oriente (UO). Santiago de Cuba, Cuba

^{*}Autor de la correspondencia: yanelia@elecstg.une.cu

En materia de energías limpias, el auge de la energía eólica y solar llevó a que en el año 2023 se registrara la cifra récord de un 30% de la electricidad mundial producida por energías renovables, lográndose reducir en este año la intensidad del carbono en la generación global de energía eléctrica a un nuevo mínimo histórico, un 12% menos que su pico en 2007 [3, 6]. El sector energético en Cuba se rige por las directivas del Ministerio de Energías y Minas (MINEM), el cual se encarga proponer, dirigir y controlar las políticas del Estado y del Gobierno en materia de energía para un desarrollo sostenible y sustentable, en armonía con el medioambiente; así como las políticas para el uso racional de este recurso, contribuyendo a la seguridad energética de la nación.

La demanda de energía en Cuba no se satisface debido a la dependencia de los combustibles fósiles, en su mayoría importados, lo cual afecta significativamente a la economía nacional y la calidad de vida de la población, además de impactar negativamente en el medioambiente por la quema de hidrocarburos y la consiguiente emisión de dióxido de carbono[7, 8].En la actualidad, el país demanda alrededor de ocho millones de toneladas de combustibles, que debe cubrirse con la importación del 60 % de ellos y produce alrededor del 40 %. Una parte considerable del petróleo importado se destina a la generación de electricidad, ya que alrededor de un 95 % de la generación eléctrica se obtiene a partir de combustibles fósiles.

No obstante, la producción de electricidad requiere del 61 % de los combustibles disponibles por el país. La producción nacional (crudo y gas natural) cubre el 54 % de la generación, y el otro 46 %, el fuel y el diésel, que son los más costosos, se tienen que importar. La transición energética en Cuba busca eliminar o reducir la importación de combustibles fósiles a partir de las fuentes renovables de energía, fundamentalmente la solar fotovoltaica, la eólica y la biomasa cañera, de las que Cuba posee vastas reservas[3, 6].En el año 2014 se aprobó la Política de las Fuentes Renovables de Energía (FRE), con el fin de fomentar la penetración de las energías renovables en el Sistema Eléctrico Nacional hasta lograr la independencia energética, aspirando a penetrar con FRE el Sistema Electroenergético Nacional (SEN) un 24 %en el año 2030, en el 2040 lograr la independencia energética, y en el 2050 alcanzar el 100% de FRE[2], [3].

Teniendo como base el potencial de fuentes renovables disponible en el país, se prevé la instalación de 3548 MW de potencia conectada al SEN, donde se incluye la construcción de: 755 MW con 19 Bioeléctricas anexas a los centrales azucareros; 633 MW con 13 parques eólicos, 2104 MW Fotovoltaicos y 56 MW con 74 pequeñas centrales hidroeléctricas[6].En la provincia Santiago de Cuba se captó un área para la instalación de un Parque Solar Fotovoltaico (PSFV) de 21,8 MW ubicado en Las Guásimas, municipio Contramaestre, este tributará a la Subestación Contramaestre 110/34,5 kV. Esta subestación cuenta con 2 transformadores de 25 MVA, con niveles de cargabilidad del 45,42% el T1 y 77,41% el T2; por lo que existe la necesidad de estudiar la factibilidad de esta inversión al variar el comportamiento de sus regímenes de trabajo de la subestación[9].

Esta investigación, parte de la caracterización de la Subestación Contramaestre 110/34,5 kV y el impacto técnico de la conexión de un PSFV de 21,8 MW, mediante el análisis de distintos escenarios en régimen estable y su comportamiento dinámico, empleando el software DIgSILENTPower Factory. De esta manera es posible establecer el escenario óptimo para la instalación del PSFV, considerando las pérdidas de potencia en los transformadores y las variaciones de la tensión en el punto de conexión, mediante el análisis en régimen dinámico al variar la generación del parque.

MATERIALES Y MÉTODOS

Caracterización de la Subestación Contramaestre 110/34,5 kV y sus líneas de subtransmisión

La Subestación Contramaestre 110/34,5 kV está situada en las inmediaciones de la ciudad de Contramaestre, a orillas de la Carretera Central a unos 3 km de la ciudad en la dirección Santiago de Cuba - Contramaestre. Se alimenta eléctricamente de dos circuitos a 110 kV, Palma - Contramaestre y Renté- Contramaestre II. Posee dos transformadores de 25 MVA cada uno y tensión 110/34,5 kV. La subestación, fue diseñada para trabajar con los 2 transformadores en paralelo, cerrado el enlace de barra, al dañarse el transformador T2, este fue sustituido por un transformador de igual potencia y ciertas características afines al transformador T1, pues estos solo pueden operar en paralelo en 8 de los 18 pasos de conmutación que son donde coinciden las tensiones, es decir , cuando el transformador T1 (de fabricación rusa) esté en el tap 10 (110 kV), el transformador T2 (de fabricación checa) debe estar en el tap 9 (110 kV).

A causa de la diferencia entre los transformadores de la regulación de tensión, la impedancia de cortocircuito, y que en un transformador cuando se sube tap se sube la tensión y el otro cuando se sube tap se baja la tensión, es recomendado para evitar confusiones, que los transformadores trabajen de forma radial, es decir, con el enlace entre ellos abierto. Además de esto, el transformador T1 no está tropicalizado, por lo que para garantizar sus parámetros normales no debe de pasar de una carga de 22,5 MVA, y trabajando en paralelo de una carga de 41 MVA aproximadamente.

Por el lado de 34,5 kV posee dos barras de operación enlazadas por el interruptor 4400. La barra 1 es alimentada por el interruptor totalizador 4045 del transformador T1 y alimenta los interruptores 4385 y 4390. La barra 2 es alimentada por el interruptor totalizador 4415 del T2 y alimenta los interruptores 4395 y 4435.Los 4 interruptores por en el lado a 34,5 kV alimentan eléctricamente a cuatro circuitos, que en su totalidad cuentan con 322,44 km de línea de subtransmisión y alimentan a 57545 clientes.

Los cuatro circuitos son:

- 710 Contramaestre Jiguaní (UU4395).
- 724 Contramaestre Bombeo (UU4435).
- 711 Contramaestre Hatillo (UU4385).
- 709 Contramaestre Palma (UU4390).

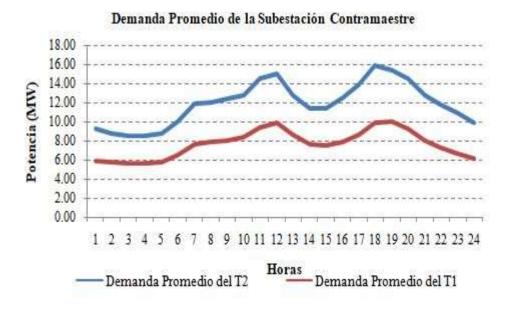
Línea UU4395

El circuito UU4395, sale de la subestación a través del interruptor 4395, corre por los Poblados Contramaestre, Baire y Bungo, llegando hasta el Municipio Tercer Frente y a la provincia Granma por la zona de Dos Ríos. Con 81,6 km de extensión suministra la Energía Eléctrica a 28244 clientes. Esta línea con una capacidad instalada de 22,7 MVA, alimenta eléctricamente a 8 Subestaciones No Atendidas y 31 transformadores monofásicos, para una capacidad instalada de 21,6 MVA y 1,09 MVA respectivamente. Tiene 37 clientes declarados importantes para la Empresa Eléctrica, y una falla de esta provoca grandes daños sociales, políticos y económicos, ya que se afectarían todos los procesos productivos del Municipio Tercer Frente y parte del Municipio Contramaestre entre ellos el Hospital Provincial Orlando Pantoja y la Procesadora de Café Rolando Ayúb.

Línea UU4435

El circuito UU4435 sale de la subestación a través del Interruptor 4435, corre por los Poblados de América, El Naranjo, Camino de la Isla, El Garrote, Guayabal y Bungo. Suministra la Energía Eléctrica a través de 36,3 km de línea a 6752 clientes. Esta línea con una capacidad instalada de 20,5 MVA, alimenta eléctricamente a 11 Subestaciones No Atendidas y 16 transformadores monofásicos, para una capacidad instalada de 20,9 MVA y 0,75 MVA respectivamente. Además, tiene 12 clientes declarados importantes para la Empresa Eléctrica. Por lo que una falla de esta provoca grandes daños sociales y económicos, ya que se afectarían varios procesos productivos del Municipio Contramaestre entre ellos los Bombeos de Agua para de los Planes Citrícolas y la Producción del Complejo Agroindustrial (CAI) América Libre.

Línea UU4385


El circuito UU4385 sale de la subestación a través del Interruptor 4385. El tronco corre por Cruce de Lajas hasta llegar a la frontera entre los municipios Contramaestre y Palma Soriano, donde alimenta los poblados palmeros de Gladis, Aduana, Pilar, entre otros. Suministra la energía eléctrica a través de 115,74 km de línea a 10241 clientes. Esta línea con una capacidad instalada de 24,36 MVA, alimenta eléctricamente a 11 Subestaciones No Atendidas y 38 transformadores monofásicos, para una capacidad instalada de 24,36 MVA y 1,5 MVA respectivamente. Además alimenta eléctricamente a 7 clientes declarados importantes para la Empresa Eléctrica. Por lo que una falla de esta produce grandes daños sociales y económicos, ya que se afectarían varios procesos productivos del Municipio Palma Sporiano, entre ellos el Bombeo Vertical que abastece el Agua a parte del Municipio Santiago de Cuba.

Línea UU4390

La línea UU4390 sale de la subestación a través del interruptor 4390. Esta línea alimenta a través de 88,8 km de línea y alimenta a 12308 clientes. Tiene una capacidad instalada de 30,66 MVA, alimenta eléctricamente a 16 Subestaciones No Atendidas y 37 transformadores monofásicos, para una capacidad instalada de 29,25 MVA y 1,4 MVA respectivamente. Además, tiene 8 clientes declarados importantes para la Empresa Eléctrica. Por lo que una falla de esta produce grandes daños sociales y económicos, ya que se afectarían varios procesos productivos del Municipio Palma Soriano, entre ellos el Polo Agroalimentario de Laguna Blanca, el CAI Dos Ríos y el Bombeo Balsa Flotante que abastece el Agua a parte del Municipio Santiago de Cuba.

Análisis de la demanda de la Subestación Contramaestre 110/34,5 kV

La demanda de los transformadores de la Subestación Contramaestre 110/34,5 kV presenta dos picos, ambos coincidentes con los pocos de demanda nacionales, uno el pico nocturno y el otro el pico del medio día. La máxima demanda registrada en el pico del día en el año 2023 fue de 19,15 MW el T1 y de 21,76 MW el T2; pero la demanda promedio en este mismo horario es de 9,47 MW y 15,09 MW respectivamente. Por lo que la cargabilidad promedio del T1 es de 45,42 % y la del T2 de 77,41 % (ver figura 1).

Fig. 1. Demanda de los totalizadores de los transformadores en el año 2023. Fuente: Empresa Eléctrica Santiago de Cuba

Ubicación del PSFV de 21.875 MW Las Guásimas

El área del parque está situada al Este del Municipio Contramaestre, en áreas cultivadas de caña de la Unidad Básica de Producción Cooperativa (UBPC) El Encanto, en el caserío Las Guásimas, en una zona de relieve prácticamente llano, presenta buen nivel de acceso, el que se produce a través de un terraplén en mal estado técnico con una longitud aproximada de 5 km desde el entronque con la carretera central hasta el área. El área total es de 48,8 ha. Sus dimensiones presentan forma geométrica poligonal y posee una altura máxima de 98,0 m sobre el nivel medio del mar. Posee relieve prácticamente llano con pendientes menores al 5% (ver figura 2).

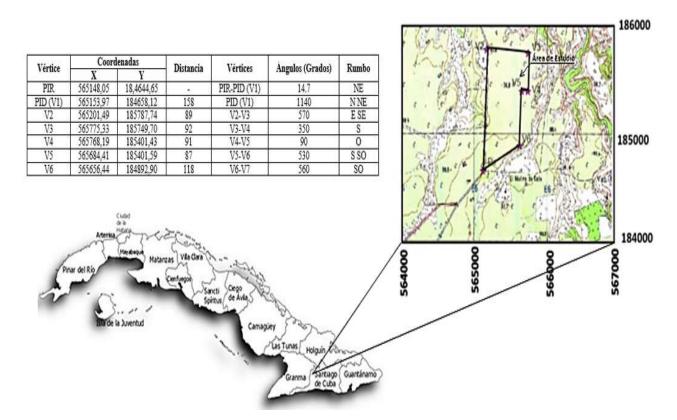


Fig.2. Coordenadas y plano de ubicación del área hoja cartográfica 4976-I- a Contramaestre, a escala 1:25000. Fuente: Instituto Cubano de Geodesia y Cartografía

El terreno cuenta con la siguiente litología:

- Capa vegetal. Arcilla orgánica (OH), color carmelita oscuro. Espesor que varía entre 0,20 y 0,30 m.
- Capa No. 1. Arcilla inorgánica de alta plasticidad (CH), color carmelita oscuro con vetas de carbonato de calcio. Espesor que varía entre 1,0 y 3,0 m.
- Arcilla limosa de baja plasticidad (CL), color carmelita claro. Espesor que varía entre 1,0 y 2,5 m.
- Arena limosa (SM), color carmelita verdoso, de origen aluvial. Espesor que varía entre 0.80 2.0 m.
- Intercalaciones de lutitas calcáreas, areniscas de granos finos a medios y conglomerado polimíctico con cementos arcillosos, pertenecientes a la formación San Luís y con una profundidad de yacencia que varía entre 4,0 y 10,0 m.
- El nivel del agua subterránea yace a una profundidad que oscila entre 3,5 y 6,0 m, es un agua hidrocarbonatada sódica y no presenta agresividad hacia hormigón, ni hacia los metales del hormigón armado.

Instalación de los PSFV de 21.875 MW

Está estipulado por la Unión Eléctrica (UNE) que, con tecnología de hincado de pilotes, el PSFV se construya en un periodo de 4 meses contando con:

- Montaje de 7 Contenedor Tecnológico (que cada uno contiene un inversor centralizado de 3 125 kW, modelo TC3125KF, un transformador BT/MT tipo S-3150/34,5 kV, celda de salida a 34,5 kV y equipos auxiliares del contenedor, el integrador del contenedor es el fabricante del inversor TBEA).
- Montaje de 98 Caja Concentradora de Corriente Directa.
- Montaje de 1 638 estructura soporte fijas Cada una brindará soporte a 28 módulos fotovoltaicos, 2 módulos en vertical y 13 módulos en sentido longitudinal (2x13).
- Montaje de 42 588 módulos fotovoltaicos de silicio monocristalino, monofacial con potencia nominal de 560 Wp.
- Montaje de un contenedor de equipos primarios (Celdas de MT), está conformado por 12 Celdas de MT, 2 Transformadores (secos) de uso de planta de 80 kVA y dos paneles de distribución de CA (400 V, 630 A).
- Montaje de un contenedor de equipos secundarios (Control), esta formados por dos transformadores de uso de planta y dos paneles de distribución.

RESULTADOS y(o) DISCUSIÓN Generación del PSFV Las Guásimas

Para el cálculo de la generación de Energía del parque se utilizó el programa de "Calculo de energía para paneles fijos" de la Empresa Hidroenergía. De acuerdo a las coordenadas del área del PSFV (ver figura 2), la inclinación de los paneles, la irradiación solar, el rendimiento de los módulos, entre otros factores, se determinó aproximadamente la energía generada por el parque, ver figura 3 y tabla 1.Los resultados obtenidos evidencian que, según la incidencia solar, el PSFV genera aproximadamente durante 12 horas al día, desde las 6:00 h y hasta las 18:00 h; alcanzando a generar el 50 % de su capacidad instalada entre las 9:00 h y las 10:00 h, y cae por debajo de este entre las 15:00 h y las 16:00 h; su máxima generación la realiza en el horario de las 11:00 h a las 13:00 h alcanzando el 72,55 % de su capacidad instalada.

Generación Diaria Promedio PSFV Las Guásimas

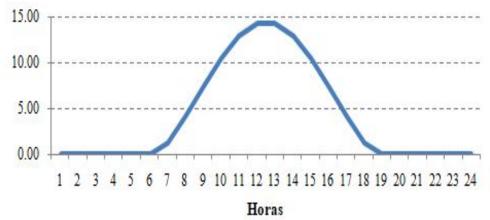


Fig. 3. Generación promedio del PSFV de 21,8 MW Las Guásimas en un día. Fuente: Elaboración propia

Tabla 1. Generación promedio del PSFV Las Guásimas según los meses del año. Fuente: Elaboración propia

Meses	Radiación solar diaria horizontal (kWh/m²)/día	Temperatura ambiente (°C)	Horas promedio de luz solar	Radiación solar diaria inclinada (kWh/m²)/día	Energía (MWh)
Enero	4,19	29,0	10,9	4,76	2594,4
Febrero	4,99	29,5	11,3	5,48	2673,3
Marzo	5,44	29,7	11,9	5,67	3059,7
Abril	6,13	30,6	12,5	6,06	3145,5
Mayo	5,94	31,2	13,0	5,66	3042,0
Junio	5,97	31,9	13,2	5,58	2899,0
Julio	6,32	32,5	13,1	5,94	3167,0
Agosto	6,53	32,7	12,7	6,34	3355,5
Septiembre	5,53	31,9	12,1	5,63	2911,2
Octubre	5,19	30,9	11,5	5,59	2998,4
Noviembre	4,49	29,4	11,0	5,09	2672,1
Diciembre	3,89	28,3	10,8	4,51	2475,8
Promedio anual	5,43	30,7	12,0	5,53	2916,2

Corridas de flujo

Las corridas de flujo se realizaron teniendo en cuenta las características de la SE con sus cuatro líneas salientes y el PSFV según la curva de generación, tomando un muestreo de generación según la potencia instalada al 100%, el 65 % y 48 %. Además, se analizaron los regímenes de trabajo de la SE al conectar el PSFV en 6 escenarios diferentes.

- Escenario 1: PSFV al T2 (UU4395 y UU4435).
- Escenario 2: PSFV al T1 (UU4390 y UU4385).
- Escenario 3: PSFV al T1 y T2 (UU4395 y UU4385).
- Escenario 4: PSFV al T1 y T2 (UU4435 y UU4385).
- Escenario 5: PSFV al T1 y T2 (UU4390 y UU4395).
- Escenario 6: PSFV al T1 y T2 (UU4390 y UU4435).

Para la corrida de flujo se utilizó el programa de cálculo DIgSILENTPower Factory. Este software está diseñado para el análisis, modelado y simulación de sistemas eléctricos de potencia. Es una herramienta ampliamente utilizada en el ámbito de la ingeniería eléctrica para evaluar la estabilidad, confiabilidad y eficiencia de redes de transmisión y distribución [9-11]. A continuación, se resumen los resultados de las corridas de flujo de potencia en cada escenario, con valores correspondientes al 100, el 65 y el 48 % de la generación del PSFV (ver tablas 2, 3 y 4 respectivamente).

Tabla 2. Resultado de la corrida de flujo en los diversos escenarios con la generación del PSFV al 100 % de su potencia instalada. Fuente: Elaboración propia

			Actual	Esc. 1	Esc. 2	Esc. 3	Esc. 4	Esc. 5	Esc. 6
Transferencia	T1	MW	6,86	6,86	-13,04	0,01	-0,61	0,32	-0,27
	11	MVAr	3,76	3,76	2,15	0,82	0,89	1,42	1,51
	T2	MW	15,79	-4,25	15,79	2,61	3,28	2,31	2,96
	12	MVAr	10,06	2,53	10,06	3,55	3,88	3,6	3,93
Cargabilidad	T1	%	34,78	34,78	58,77	3,66	4,8	6,47	6,82
	T2	%	74,9	19,58	74,9	17,61	20,3	17,12	19,68
Pérdidas SE	ΔΡ	MW	0,95	0,91	1,04	0,9	0,96	0,92	0,98
	$\frac{\Delta}{Q}$	MVAr	4,45	3,08	5,14	2,83	2,98	2,87	3,02
Factor de Potencia	FP		0,95	0,92	0,92	0,92	0,92	0,92	0,92
Tensión (B1/B2)	V	kV	33,9/33,8	33,9/34,5	34,5/33,8	34,3/34,2	34,3/34,2	34,4/34,3	34,4/34,3

Tabla 3. Resultado de la corrida de flujo en los diversos escenarios con la generación del PSFV al 65 % de su potencia instalada. Fuente: Elaboración propia

			Actual	Esc. 1	Esc. 2	Esc. 3	Esc. 4	Esc. 5	Esc. 6
Transferencia	T1	MW	6,86	6,86	-7,37	3,08	2,54	3,23	2,71
		MVAr	3,76	3,76	1,33	0,52	0,57	1,01	1,08
	T2	MW	15,79	1,43	15,79	5,24	5,82	5,09	5,66
		MVAr	10,06	1,63	10,06	3,09	3,45	3,12	3,48
Cargabilidad	T1	%	34,78	34,78	33,29	13,87	11,55	15,05	12,98
	T2	%	74,9	8,68	74,9	24,34	27,08	23,88	26,56
Pérdidas SE	ΔΡ	MW	0,95	0,85	0,97	0,87	0,91	0,88	0,92
	ΔQ	MVAr	4,45	2,88	4,49	2,86	2,96	2,87	2,98
Factor de Potencia	FP		0,95	0,92	0,92	0,92	0,92	0,92	0,92
Tensión (B1/B2)	V	kV	33,9/33,8	33,9/34,5	34,5/33,8	34,3/34,2	34,3/34,2	34,4/34,3	34,4/34,3

Tabla 4. Resultado de la corrida de flujo en los diversos escenarios con la generación del PSFV al 48 % de su potencia instalada. Fuente: Elaboración propia

			Actual	Esc. 1	Esc. 2	Esc. 3	Esc. 4	Esc. 5	Esc. 6
Transferenci a	TP.1	MW	6,86	6,86	3,64	5,1	4,6	5,14	4,68
	T1	MVA r	3,76	3,76	0,88	0,34	0,38	0,77	0,83
	T22	MW	15,79	5,18	15,79	6,97	7,5	6,93	7,43
	T2	MVA r	10,06	1,2	10,06	2,82	3,2	2,92	3,21
Cargabilida d	T1	%	34,78	34,78	16,63	22,7	20,53	23,12	21,11
	T2	%	74,9	21,26	74,9	30,08	32,62	29,92	32,38
Pérdidas SE	ΔΡ	MW	0,95	0,83	0,95	0,86	0,9	0,86	0,9
	ΔQ	MVA r	4,45	2,94	4,26	2,98	3,06	2,99	3,07
Factor de Potencia	FP		0,95	0,92	0,97	0,92	0,92	0,92	0,92
Tensión (B1/B2)	V	kV	33,9/33,	33,9/34,	34,5/33,	34,3/34,	34,3/34,	34,4/34,	34,4/34,

ANÁLISIS DE LOS RESULTADOS

Analizando los resultados obtenidos según lo establecido en las normas cubanas NC 800:2017 y NC 800-1, 2011[12].

- NC 800:2017: La variación de tensión en las redes de media tensión (entre 1kV y 35 kV) se mantendrá en el rango de ± 5% en el peor nodo o poste desde el punto de vista de la caída de tensión durante la operación.
- NC 800-1, 2011: Las pérdidas de potencia activa y de energía son permisibles hasta un 3 %.

Los seis escenarios cumplen con los regímenes de trabajo normalizados. Teniendo en cuenta que los transformadores de la subestación no están conectados en paralelo para garantizar la flexibilidad, fiabilidad y estabilidad del Sistema Eléctrico además de garantizar la entrega de la generación del parque se desechan los escenarios 1 y 2. De los escenarios restantes teniendo en cuenta los resultados obtenidos en las corridas de flujo resaltan los escenarios 3 y 5 ya que los niveles de cargabilidad de los transformadores y niveles de pérdidas son más atrayentes, y por consiguiente analizando la disposición en el terreno de estas líneas y los kilómetros de líneas a construir, además de la complejidad de las estructuras, se recomienda la ejecución del escenario 5 (líneas UU4390 y UU4395).

Análisis de la demanda de la subestación con la generación del PSFV

A partir de la figura 1, Demanda de los totalizadores de los transformadores en el año 2023 y de la figura 3, Generación promedio del PSFV de 21.87 MW Las Guásimas en un día, se obtiene el comportamiento de la demanda de la subestación al instalarse los PSFV según los diferentes escenarios (ver figura 4). Donde se evidencia que en el horario del día disminuye la demanda del SEN.

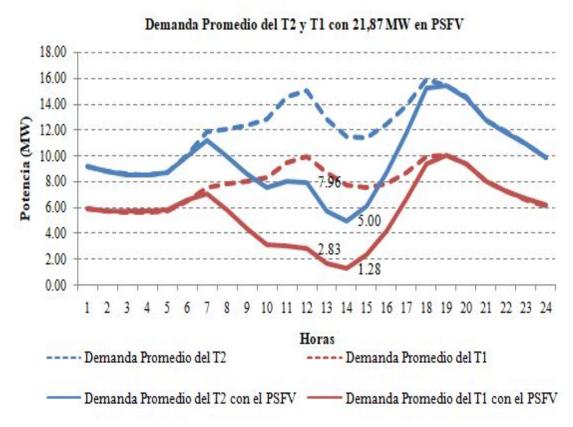


Fig. 4. Demanda Promedio del T2 y T1 con 21.87 MW en PSFV. Fuente: Elaboración propia

La simulación en régimen dinámico permite realizar el análisis del efecto de la generación del PSFV con respecto a la tensión [13, 14], considerando una demanda de 25 MW (ver análisis Q -V en la figura 5). Además, es posible estudiar la estabilidad de tensión ante la variación de la demanda[13, 14] (ver análisis P -V en la figura 5). En ambos casos, se demuestra que la tensión se comporta de manera estable en el sistema. En la figura 6, se muestra el análisis en régimen dinámico obtenido mediante la simulación del esquema en el software DIgSILENTPower Factory. La simulación considera la variación en la generación del PSFV considerando cambios en la irradiación solar durante un día. Por consiguiente, se reflejan las variaciones en la potencia activa (P), la potencia reactiva (Q), la tensión (V) en valores por unidad (p.u.) y el factor de potencia (FP) [15, 16].

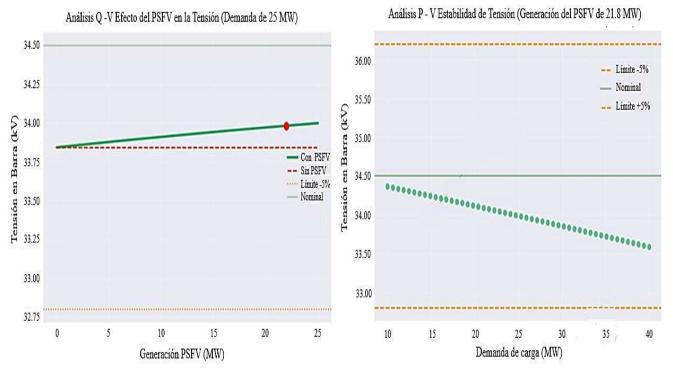
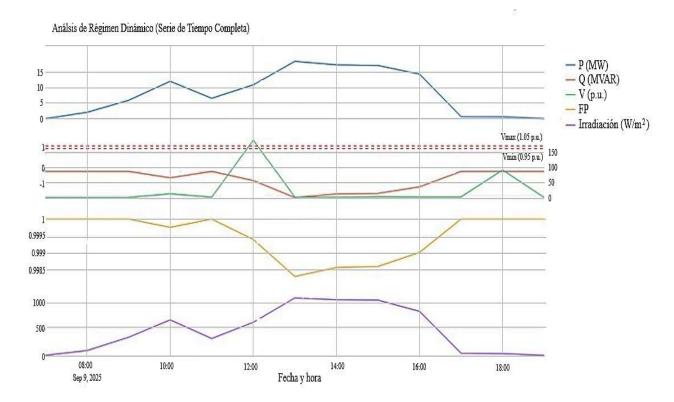
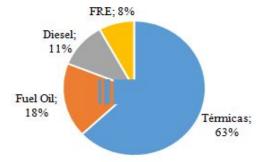
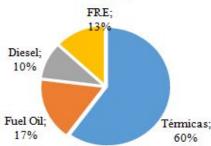


Fig. 5. Variación de la tensión por la variabilidad de la generación del PSFV. Fuente: Elaboración propia




Fig. 6. Análisisde régimen dinámico en el punto de conexión al variar la generación por el efecto de las nubes sobre el PSFV.

Fuente: Elaboración propia


Análisis de la matriz energética de Santiago de Cuba

En la provincia Santiago de Cuba hay una capacidad instalada de generación de Energía Eléctrica de 547,43 MW, con la instalación de un PSFV de 21,87 MW la capacidad instalada aumenta a 549,3 MW, moviendo la matriz como se muestra en la figura 5.

Matriz energética de la provincia Santiago de Cuba sin el PSFV Las Guásimas

Matriz energética de la provincia Santiago de Cuba con el PSFV Las Guásimas

Fig. 5. Cambios en la matriz energética de la provincia Santiago de Cubacon la instalación del PSFV Las Guásimas. Fuente: Elaboración propia

Ahorros por concepto de generación

Para el cálculo de los ahorros, por concepto de generación al instalar el PSFV, se considerará como energía ahorrada el valor de energía generada por el parque, obtenido con el programa de "Calculo de energía para paneles fijos" de la Empresa Hidroenergía, siendo este valor de 34993.9 MWh/año.

Ahorro de combustible

Considerando que, el valor obtenido a partir del cálculo de la energía generada por el PSFV es de 34993,9 MWh/añoy,que el consumo de combustible especifico del SEN de 0,26 ton/MWh, es posible determinar que el combustible ahorrado por el cambio de la fuente de generación equivale a 9098,41 ton/año de combustible fósil.

Impacto económico por ahorro de combustible

El impacto económico derivado del ahorro de combustible pude determinarse a partir del precio ponderado del combustible usado para la generación de energía eléctrica, siendo este de 566,7 USD/ton, lo cual equivale a un ahorro de 5156 MUSD/año.

Efecto social

La ejecución de la inversión del montaje del PSFV esta sustenta en:

Razones estratégicas de tipo económicas [17, 18].

- Incremento de 21,875 MW de potencia instalada en el SEN que generará como promedio anual 34993,9 MWh/año a partir del empleo de una fuente limpia y renovable de energía, el sol.
- Ahorro anual de 9098,41 ton/año de combustible fósil en la generación de electricidad.
- Ahorro de 5156 MUSD/año por concepto de sustitución de importaciones de combustibles fósiles para la generación de electricidad.
- Ingresos promedio anuales por la venta de la energía por valor de 124,7 MMCUP.

Impacto social y ambiental [17, 19, 20].

- Permitirá cubrir parte de la demanda eléctrica en el país.
- Generará nuevas fuentes de empleos.
- Reducirá las emisiones de gases de efecto invernadero procedentes de la generación de electricidad a más de 25 mil ton/año en cualquiera de los combustibles sustituidos, y con ello el impacto negativo a la naturaleza y la sociedad de las sustancias contaminantes como resultado de la utilización de los combustibles fósiles en la generación de electricidad.

CONCLUSIONES

A partir del desarrollo del estudio, ha sido posible determinar el impacto de la instalación del PSFV Las Guásimas en el sistema eléctrico de la provincia Santiago de Cuba. El análisis, arrojó que:

- 1. El PSFV genera aproximadamente 12 horas al día, generando más del 50 % de su capacidad instalada durante un intervalo de 5 h/día, logrando 34993,9 MWh/año de energía.
- 2. La variante más atractiva para el montaje del PSFV es su conexión a través de las líneas UU4390 y UU4395. Con esta variante, disminuye la cargabilidad de los transformadores y las pérdidas técnicas, además de que su disposición en el terreno facilita la inversión.
- 3. Con la instalación de 21,875 MW en el PSFV Las Guásimas se logra un ahorro de 9098,41 ton/año de combustible fósil.
- 4. Se logra un ahorro de 5156 MUSD/año por concepto de sustitución de importaciones de combustibles fósiles para la generación de electricidad.
- 5. La implementación del proyecto tiene un impacto positivo al medio ambiente, al evitar que se emitan más de 25 mil ton/año de gases de efecto invernadero, procedentes de la generación de electricidad.

REFERENCIAS

- [1] Toro, P., et al. "Estabilidad del Voltaje en Redes Eléctricas con la Integración de Sistemas Fotovoltaicos: Una Revisión Crítica de los Desafíos y Soluciones: Voltage Stability in Power Grids with the Integration of Photovoltaic Systems: A Critical Review of the Challenges and Solutions". Bol. Científico Ideas Voces. 2024, vol. 4, n. 3. ISSN 2960-8112. Disponible en: https://ciciap.org/ideasvoces/index.php/BCIV/article/view/169
- [2] Fernández, M. "Challenges and technical requirements for integration of renewable energy sources in Cuban electric system". Int. J. Phys. Sci. Eng. 2018, vol. 2. ISSN 2550-6951. Disponible en: https://www.researchgate.net/publication/327587628_Challenges_and_technical_requirements_for_integration_o f renewable energy sources in Cuban electric system
- [3] Korkeakoski, M. "State of Play for 100% Renewable Energy Futures for Cuba: Recent Changes and Challenges". Sustainability. 2022, vol. 14, n. 21. ISSN 2071-1050. Disponible en: https://www.mdpi.com/2071-1050/14/21/13825
- [4] Torres, N., *et al.* "Evolución y evaluación de la calidad de la energía en redes de distribución y subtransmisión: Evolution of power quality assessment methods for electrical distribution and subtransmission networks". Ing. Energética. 2024, vol. 45, n. 3. ISSN 1815-5901. Disponible en: http://scielo.sld.cu/pdf/rie/v45n3/1815-5901-rie-45-03-e2416-01.pdf
- [5] Shaikh, N., *et al.* "PV Penetrations in Conventional Power System and Generation of Harmonic and Power Quality Issues: A Review". International Journal of Power Electronics Controllers and Converters. 2024, vol. 9, n. 2. ISSN 2456-1614. Disponible en: https://ecc.journalspub.info/index.php?journal=JPECC&page=article&op=view&path%5B%5D=1976
- [6] Korkeakoski, M. "Towards 100% Renewables by 2030: Transition Alternatives for a Sustainable Electricity Sector in Isla de la Juventud, Cuba". Energies. 2021, vol. 14, n. 10. ISSN 1996-1073. Disponible en: https://www.mdpi.com/1996-1073/14/10/2862
- [7] Galván, S., *et al.* "Transición energética en América Latina y el Caribe. Desafíos y oportunidades para las tecnologías de valorización energética de residuos sólidos: Energy Transition in Latin America and the Caribbean. Challenges and opportunities for waste-to-energy technologies". Rev. Estud. Ambient. Environ. Stud. J. 2023, vol. 11, n. 1. ISSN 2347-0941. Disponible en: https://ojs2.fch.unicen.edu.ar/ojs-3.1.0/index.php/estudios-ambientales/article/view/1707
- [8] Huacho, R., *et al.* "Sistemas de energía fotovoltaica: Una revisión sistemática". Rev. Alfa. 2025, vol. 9, n. 27, p. 31–50. ISSN 2664-0902. Disponible en: https://www.revistaalfa.org/index.php/revistaalfa/article/view/542
- [9] Cardero, D., *et al.* "Estudio de estabilidad tensión en la red de distribución de la provincia Guantánamo: Study of tension stability in the distribution network of the Guantánamo province". Ing. Energética. 2024, vol. 45, n. 3. ISSN 1815-5901. Disponible en: http://scielo.sld.cu/pdf/rie/v45n3/1815-5901-rie-45-03-e2421-06.pdf
- [10] Narváez, D., et al. "Performance Evaluation of Distance Relay Operation in Distribution Systems with Integrated Distributed Energy Resources". Energies. 2024, vol. 17, n. 18. ISSN 1996-1073. Disponible en: www.mdpi.com/1996-1073/17/18/4735
- [11] Owosuhi, A., *et al.* "Maximizing the Integration of a Battery Energy Storage System–Photovoltaic Distributed Generation for Power System Harmonic Reduction: An Overview". Energies. 2023, vol. 16, n. 6. ISSN 1996-1073. Disponible en: https://www.mdpi.com/1996-1073/16/6/2549
- [12] Torres, N., et al. "Análisis y evaluación de la calidad del servicio técnico en Cuba con el método TOPSIS: Analysis and evaluation of the quality of technical service in Cuba with the TOPSIS method". Ing. Energética. 2024, vol. 45, n. 2. ISSN 1815-5901. Disponible en: http://scielo.sld.cu/scielo.php?script=sci arttext&pid=S2227-18992023000300007
- [13] Muzammal, M., *et al.* "Improving Reliability and Stability of the Power Systems: A Comprehensive Review on the Role of Energy Storage Systems to Enhance Flexibility". IEEE Access. 2024, vol. 12, p. 152738–152765. ISSN 2169-3536. Disponible en: https://ieeexplore.ieee.org/document/10711297

- [14] Ombuki, B., *et al.* "Voltage Stability Analysis in Renewable Energy Dominated Power Systems: A Review". Proc. Sustain. Res. Innov. Conf. 2022, p. 142–150. ISSN 3063-0983. Disponible en: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://sri.jkuat.ac.ke/jkuatsri/index.php/sri/article/download/560/441/1955&ved=2ahUKEwj8qpXVx6aQAxVORTABHag6DdAQFnoECBgQAQ&usg=AOvVaw2ZJPkZaw1CF874MRY3kG7M
- [15] Liang, X., *et al.* "Analytical Methods of Voltage Stability in Renewable Dominated Power Systems: A Review". Electricity. 2022, vol. 3, n. 1, p. 75–107. ISSN 2673-4823. Disponible en: https://www.mdpi.com/2673-4826/3/1/6
- [16] Campaña, M., et al. "Estabilidad de tensión y compensación electrónica en sistemas eléctricos de potencia usando herramientas de simulación". Ingenius Rev. Cienc. Tecnol. 2023, n. 29, p. 9–23. ISSN 1390-650X. Disponible en:
 - https://www.researchgate.net/publication/366861525_Estabilidad_de_tension_y_compensacion_electronica_en_s istemas electricos de potencia usando herramientas de simulacion
- [17] Ávila, C., et al. "Revisión de literatura en el diseño de sistemas híbridos de energía para minimizar costos, emisiones y maximizar producción". Rev. NeyArt. 2024, vol. 2, n. 4, p. 118–130. ISSN 2992-7161. Disponible en
 - https://www.researchgate.net/publication/387307878_Revision_de_literatura_en_el_diseno_de_sistemas_hibrido s de energia para minimizar costos emisiones y maximizar produccion
- [18] Enríquez, C., *et al.* "Evolución tecnológica de la generación solar fotovoltaica: una revisión de la literatura en la última década". Rev. Tecnológica ESPOL. 2024, vol. 36, n. 2. ISSN 1390-3659. Disponible en: Evolución tecnológica de la generación solar fotovoltaica: una revisión de la literatura en la última década
- [19] Elomari, Y., *et al.* "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis". Sustainability. 2022, vol. 14, n. 15. ISSN 2071-1050. Disponible en: https://www.mdpi.com/2071-1050/14/15/9249
- [20] Vargas, S., et al. "Energías renovables y mitigación de gases de efecto invernadero: Un análisis basado en revisión sistemática". Nativa. 2025, vol. 13, n. 2, p. 318–329. ISSN 2310-2799. Disponible en: https://www.researchgate.net/publication/392878822_ENERGIAS_RENOVABLES_Y_MITIGACION_DE_GA SES_DE_EFECTO_INVERNADERO_UN_ANALISIS_BASADO_EN_REVISION_SISTEMATICAENERGIA S_RENOVAVEIS_E_ATENUACAO_DOS_GASES_COM_EFEITO_DE_ESTUFA_UMA_ANALISE_BASEA DA_NUMA_REVISA

CONFLICTO DE INTERESES

Los autores declaran que no existen conflictos de intereses.

CONTRIBUCIÓN DE LOS AUTORES

Javier Calero Roman: https://orcid.org/0009-0001-6484-2683

Participó en el diseño de la investigación, diseño del modelo, la simulación, el procesamiento de los datos, la redacción del manuscrito, la revisión crítica de su contenido y en la aprobación final.

Yanelia Febles Columbié: https://orcid.org/0009-0006-5952-0264

Participó en el diseño de la investigación, diseño del modelo, la simulación, el procesamiento de los datos, la redacción del manuscrito, la revisión crítica de su contenido y en la aprobación final.

Nelson Alexey Castro Torres: https://orcid.org/0000-0001-8515-8998

Participó en el diseño de la investigación, diseño del modelo, el procesamiento de los datos, la revisión crítica de su contenido y en la aprobación final.

David Calas Cardero: https://orcid.org/0000-0002-6773-141X

Participó en el diseño del modelo, la simulación y el procesamiento de los datos.